Математика для гуманитариев: живые лекции | страница 20
Вы распределяете земельные участки, измеряете какие-то прямоугольные куски, у вас получается квадратное уравнение. Можно медленно прикидывать, как это сделать, а можно быстро получить ответ.
Слушатель: То есть практическое применение какое-то было?
А.С.: Ну, раньше — да. Дальше эта идея развивалась так. А что, если я напишу уравнение:
аж>3 + Ьх>2 + сх + d = О?
Могу я написать универсальную формулу, с помощью которой можно вычислить ж? При этом разрешается складывать, вычитать, умножать, делить и даже извлекать корни, причем любой степени. Но больше ничего не разрешается.
Слушатель: От куба и дальше такого сделать нельзя.
А.С.: Можно; но эту формулу не изучают в школе. Формула для кубического случая была придумана в первой половине XVI века. Несколько математиков работали над этой проблемой одновременно. Сейчас формула носит имя Джироламо Кардано, но он не придумал ее, а опубликовал метод другого математика (т. е. «громко об этом заявил»).
Чтобы выписать эту формулу, мне понадобится целая доска, поэтому я не буду этого делать. Как только поняли механизм решения кубического уравнения, сразу придумали формулу для решения уравнения четвертой степени. Она была еще страшнее. Вывел ее ученик Кардано, по фамилии Феррари. Всё это происходило в XVI веке, когда математики уже свободно обращались с буквами, поэтому был сформулирован самый общий вопрос. Можно ли написать формулу для решения уравнения произвольной степени:
а>пх>п + a>n-ix>n+ ... + a,Q = О
(а>п,а>п-1,... — известные числа. Так обозначают для удобства. А то вдруг не хватит букв алфавита для их обозначения?)?
Пусть она займет 10 досок, пусть она займет 100 досок. Погоня за этой формулой продолжалась до конца XVIII века. А в самом начале XIX века прозрение спустилось на несколько человек сразу, из которых самым главным я считаю французского математика Эвариста Галуа (хотя первым ситуацию в общих чертах осознал Жозеф Луи Лагранж). Было доказано, что никакая конечная формула не может быть решением уравнения произвольной степени. Такой формулы не существует. Не потому, что люди еще глупые или не все формулы перебрали или, может быть, они не так ставили корни. Никакое выражение, содержащее плюс, минус, умножить, разделить и извлечь корень любой степени не может при подстановке в уравнение а>пх>п + а„_\х>п^>1 + ... + ао = О полностью сократиться. Это — математически строгий результат начала XIX века7.
Еще очень известна теорема Ферма. Доказательство теоремы Ферма — это примерно 120 страниц трудного текста для очень посвященного человека.