Золотое сечение. Математический язык красоты | страница 60



360°∙1/Ф>2 = 360°/Ф>2

(где 360° соответствует полному обороту) и получим угол в 137,5°, который иногда называют «золотым» углом.

Идя в противоположном направлении, от математики к ботанике, группа ученых во главе с Ривьером доказала в 1984 г., что, используя математический алгоритм и угол роста, равный «золотому» углу, можно получить конфигурации, подобные тем, которые встречаются у реального подсолнечника. Это заключение было интересно тем, что именно однородные и сопоставимые структуры в живых организмах резко ограничивают их возможные формы. В свою очередь, это объясняло частое появление чисел Фибоначчи и золотого сечения в филлотаксисе. Другие эксперименты, например, с магнитными полями, также приводят к конфигурациям с «золотой» спиралью.



Каждый следующий лист на стебле подсолнечника повернут примерно на 137,5° от предыдущего.


В этом распределении виртуальных семян, сгенерированном компьютером, можно ясно увидеть большое количество спиралей в разных направлениях. Количества спиралей похожей длины в обоих направлениях обычно соответствуют числам из последовательности Фибоначчи.



Классический эксперимент в этой области был проведен в 1907 г. немецким математиком Герритом ван Итерсоном. Он расположил последовательные точки по спирали с поворотом на 137,5° и показал, что человеческий глаз воспринимает их как семейство спиралей, закрученных по часовой и против часовой стрелки. Количество спиралей в этих двух семействах, как правило, соответствует числам Фибоначчи. Подсолнечник — один из самых ярких примеров этого явления. Его семена образуют спирали по часовой и против часовой стрелки. Количества таких спиралей являются числами из последовательности Фибоначчи. Наиболее часто встречаются пары 21 и 34, 34 и 55, 89 и 144.

Что это: внутренняя закономерность роста или просто удивительное совпадение?



Подсолнечник содержит 21 и 34 спирали в противоположных направлениях.


Ветви деревьев расположены так же, как и листья растений. Опять же, ветви растут не одна над другой, а по спирали. Размер дерева меняется по ходу его роста, но пропорции между высотой и длиной его ветвей сохраняются, как и общая форма. Благодаря этому опытный наблюдатель может отличить один вид от другого на расстоянии, не рассматривая листья или кору вблизи.



Тысячелистник птармика (Achillea ptarmica) — одно из многих растений, у которого ветки и листья расположены в соответствии с последовательностью Фибоначчи.