Лекции по физике 1 | страница 76



O) как отношение >o>/N. Но что принять за величину >о>? Каким образом можно узнать, что ожидается? Во многих случаях самое луч­шее, что можно сделать, это подсчитать число выпадений «ор­ла» в большой серии испытаний и взять >o> =N>o (наблюден­ное). (Как можно ожидать чего-то еще?) При этом, однако, ну­жно понимать, что различные наблюдатели и различные серии испытаний могут дать другое значение P(О), отличное от нашего. Следует ожидать, однако, что все эти различные ответы не будут расходиться больше чем на >1/>2ЦN [если Р(O)близко к половине], Физики-экспериментаторы обычно говорят, что «эксперимен­тально найденная» вероятность имеет «ошибку», и записывают это в виде

(6.14)

При такой записи подразумевается, что существует некая «ис­тинная» вероятность, которую в принципе можно подсчитать, но что различные флуктуации приводят к ошибке при экспери­ментальном ее определении. Однако нет возможности сделать эти рассуждения логически согласованными. Лучше все-таки, чтобы вы поняли, что вероятность в каком-то смысле — вещь субъективная, что она всегда основывается на какой-то неопре­деленности наших познаний и величина ее колеблется при их изменении.

§ 4. Распределение вероятностей

Давайте вернемся к проблеме случайных блужданий, но теперь уже с некоторым изменением. Пусть в дополнение к случайному выбору направления шага (+ или -) некоторым непредсказуемым образом меняется также и его длина, причем требуется выполнение одного-единственного условия, чтобы длина шага в среднем была равна единице. Эта задача уже боль­ше похожа на тепловое движение молекул в газе. Обозначим длину шага через S, которая, вообще говоря, может быть лю­бой, но наиболее часто будет принимать значения где-то «вбли­зи» единицы. Для большей определенности давайте положим >2>=1, или, что эквивалентно, S>C>->K= 1. Вывод выражения для >2> при этом останется тем же, за исключением того, что уравнение (6.8) изменится теперь следующим образом:

>2>N>=>2>N>-1>+>2>=>2>N>-1>+1. (6.15)

Так что, как и прежде,

>2>N>=N. (6.16)

Каково же в этом случае будет распределение расстояний! Какова, например, вероятность того, что после 30 шагов Dока­жется равным нулю? Вероятность этого равна нулю! Вообще вероятность любой заданной величины Dравна нулю. Действи­тельно, совершенно невероятно, чтобы сумма всех шагов назад (при произвольной длине каждого из них) в точности скомпенсировалась шагами вперед. В этом случае мы уже не можем построить график типа изображенного на фиг. 6.2.