Лекции по физике 1 | страница 75
Отклонение n>o от ожидаемой величины N/2 будет равно
(6.11)
откуда для среднего квадратичного отклонения получаем
(6.12)
Вспомним теперь наш результат для d>c>->k. Мы ожидаем, что среднее расстояние, пройденное за 30 шагов, должно быть равно V30 = 5,5, откуда среднее отклонение kот 15 должно быть 5,5:2 = 2,8. Заметьте, что средняя полуширина нашей кривой на фиг. 6.2 (т. е. полуширина «колокола» где-то посредине) как раз приблизительно равна 3, что согласуется с этим результатом.
Теперь мы способны рассмотреть вопрос, которого избегали до сих пор. Как узнать, «честна» ли наша монета? Сейчас мы можем, по крайней мере частично, ответить на него. Если монета «честная», то мы ожидаем, что в половине случаев выпадет «орел», т. е.
Одновременно ожидается, что действительное число выпадений «орла» должно отличаться от N/2на величину порядка ЦN/2, или, если говорить о доле отклонения, она равна
т. е. чем больше N, тем ближе к половине отношение N>o/N.
На фиг. 6.6 отложены числа N>O/Nдля тех подбрасываний монеты, о которых мы говорили раньше.
Фиг. 6.6. Доля выпадений «орла» в некоторой частной последовательности N подбрасываний монеты.
Как видите, при увеличении числа N кривая все ближе и ближе подходит к 0,5. Но, к сожалению, нет никаких гарантий, что для каждой данной серии или комбинации серий наблюдаемое отклонение будет близко к ожидаемому отклонению. Всегда есть конечная вероятность, что произойдет большая флуктуация — появление большого числа выпадений «орла» или «решки»,— которая даст произвольно большое отклонение. Единственное, что можно сказать,— это если отклонения близки к ожидаемому >1/>2ЦN (скажем, со множителем 2 или 3), то нет оснований считать монету «поддельной» (или что партнер плутует).
Мы не рассматривали еще случаи, когда для монеты или какого-то другого объекта испытания, подобного монете (в том смысле, что возможны два или несколько достоверно не предсказуемых исхода наблюдения, например камень, который может упасть только на какую-то из двух сторон), имеется достаточно оснований полагать, что вероятности разных исходов не равны. Мы определили вероятность