Лекции по физике 4a | страница 40



L, то частота будет равна pс/b, что согласуется с формулой (49.6) при n=1. Обозначим эту частоту через w>1 Следующая собственная гармоника напоми­нает бантик из двух петель с узлом посредине. Ее длина просто равна L. Соответствующая величина k, а следовательно, и ча­стота w должны быть вдвое большими, т. е частота равна 2w>1. Частота третьей собственной гармоники оказывается рав­ной Зw>1 и т. д. Таким образом, различные собственные гармо­ники кратны целому числу низшей частоты w>1 т. е. w>1, 2w>1>, Зw>1 и т. д.

Вернемся теперь к общему движению струны. Оказывается, что любое возможное движение можно рассматривать как одно­временное действие некоторого числа собственных колебаний. На самом деле для описания наиболее общего движения долж­но быть одновременно возбуждено бесконечное число собствен­ных гармоник. Чтобы получить некоторое представление о том, что происходит при таком сложении, давайте посмотрим, что получится при одновременном колебании двух первых соб­ственных гармоник. Пусть первая из них колеблется так, как это показано в ряде схематических чертежей фиг. 49.3, где изображены отклонения струны через равные промежутки вре­мени на протяжении полуцикла низшей частоты.

Предположим теперь, что одновременно с первой собствен­ной гармоникой работает и вторая. Последовательные положе­ния струны при возбуждении этой собственной гармоники показаны тоже на фиг. 49.3 пунктирной линией. По отношению к первой гармонике они сдвинуты по фазе на 90°. Это означает, что в начальный момент никакого отклонения не было, но ско­рости двух половинок струны направлены в противоположные стороны. Вспомним теперь общий принцип линейных систем: если взять любые два решения, то сумма их тоже будет реше­нием. Поэтому перемещения, полученные сложением двух ре­шений, показанных на фиг. 49.3, будут третьим возможным ре­шением



Фиг. 49.3. Две гармоники, напоминающие при сложе­нии бегущую волну.

На этом же рисунке показан и результат сложения, который начинает напоминать горб, пробегающий взад и вперед по струне от одного конца до другого, хотя с помощью только двух собственных гармоник нельзя построить доста­точно хорошей картины такого движения; их нужно гораздо больше. Этот результат представляет на самом деле частный случай основного принципа линейных систем, который гла­сит:

Любое движение можно рассматривать как составленное из различных собственных гармоник, взятых с надлежащими ам­плитудами и фазами.