Лекции по физике 4a | страница 39



но, разумеется, не синусоидально периодично). Давайте попытаемся «вставить» в нашу струну синусоидально периодическую волну. Если один конец струны закреплен, то мы знаем, что должно полу­читься нечто похожее на наше предыдущее решение (49.3). Но то же самое должно получиться и у второго конца, ведь он тоже закреплен. Поэтому единственная возможность полу­чить периодическое синусоидальное движение—это взять волну, которая в точности укладывается на длине струны. В против­ном случае мы не получим собственной частоты, с которой струна могла бы продолжать свои колебания. Короче говоря, если по струне пустить синусоидальную волну, которая в точности укладывается на ее длине, то она сохраняет свою идеальную синусообразную форму и будет гармонически колебаться с не­которой частотой.

Математически мы можем задать форму волны в виде функ­ции sinkx, где k=w/c, как и в уравнениях (49.3) и (49.4). Эта функция обращается в нуль при х=0, однако то же условие должно выполняться и на другом конце струны. Дело в том, что kуже не будет произвольным, как в случае полуограниченной струны. Оба конца могут быть закреплены при одном-единственном условии, что sinkL=0. Но чтобы синус был равен нулю, его угол должен быть кратен целому числу p, например 0, p, 2p и т. д. Поэтому уравнение

kL=np (49.5)

в зависимости от того целого числа, которое мы подставим в него, дает полный набор различных чисел k. При этом каждому числу kсоответствует частота w, которая по формуле (49.3) равна просто

w=kc=npc/L. (49.6)

Итак, мы нашли, что синусоидальные колебания струны могут происходить только с некоторыми определенными часто­тами. Это — наиболее важная характеристика волн в ограни­ченной области. Сколь бы сложна ни была система, всегда ока­зывается, что в ней могут быть чисто синусоидальные колеба­ния, но частота их определяется свойствами данной системы и природой ее границ. В случае струны возможно множество раз­личных частот, каждой из которых соответствует определенное собственное колебание — движение, синусоидально повторяющее самое себя.

На фиг. 49.2 показаны первые три собственные гармоники нашей струны.



Фиг. 49.2. Первые три гар­моники колеблющейся струны.

Длина волны l первой из них равна 2L. В этом легко убедиться, продолжив волну до точки x=2Lи получив полный цикл синусоидальной волны. Угловая частота w равна в общем случае 2pc, деленному на длину волны К, а поскольку сейчас у нас l=2L, то частота будет равна