Лекции по физике 5a | страница 19
Когда же нам понадобится потенциал этого распределения, то брать интегралы не нужно. Мы знаем, что потенциал каждого заряженного шара —- в точках вне его— совпадает с потенциалом точечного заряда. А два смещенных шара — все равно, что два точечных заряда; значит, искомый потенциал и есть как раз потенциал диполя.
Фиг. 6,6. Две равномерно заряженные сферы, вложенные друг вдруга и слегка смещенные, эквивалентны неоднородному распределению
поверхностного заряда.
Таким путем можно показать, что распределение зарядов на сфере радиуса а с поверхностной плотностью
создает снаружи сферы такое же поле, как и диполь с моментом
Можно также показать, что внутри сферы поле постоянно и равно
Если q — угол с положительной осью z, то электрическое поле внутри сферы направлено по отрицательной оси z. Рассмотренный нами пример отнюдь не досужая выдумка составителя задач; он нам встретится еще в теории диэлектриков.
§ 5. Дипольное приближение для произвольного распределения
Столь же интересно и не менее важно поле диполя, возникающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас интересует только поле вдали от него. Мы покажем, что можно получить сравнительно простое выражение для полей, пригодное для расстояний, много больших, чем размеры тела.
Мы можем смотреть на это тело, как на скопление точечных зарядов q>iв некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы q>iзаменим на pdV.) Пускай заряд q>iудален от начала координат, выбранного где-то внутри группы зарядов, на расстояние d>i>. Чему равен потенциал в точке Р, расположенной где-то на отлете, на расстоянии R, много большем, чем самое большое из d>i