Лекции по физике 5a | страница 18
§ 4. Диполъный потенциал как градиент
Мы хотели бы теперь отметить любопытное свойство формулы диполя (6.13). Потенциал можно записать также в виде
(6.16)
Действительно, вычислив градиент 1/r, вы получите
и (6.16) совпадет с (6.13).
Фиг. 6.5. Потенциал в точке Р от точечного заряда, поднятого на Dzнад началом координат, равен потенциалу в точке Р' (на Dz ниже Р) того же заряда, но помещенного вначале координат.
Как мы догадались об этом? Мы просто вспомнили, что e>r/r>2 уже появлялось в формуле для поля точечного заряда и что поле — это градиент потенциала, изменяющегося как 1/r.
Существует и физическая причина того, что дипольный потенциал может быть записан в форме (6.16). Пусть в начало координат помещен точечный заряд q. Потенциал в точке Р(х, у, z) равен
(Множитель 1/4pe>0 опустим, а в конце мы его можем снова вставить.) Если заряд +qмы сдвинем на расстояние Dz, то потенциал в точке Р чуть изменится, скажем на Dj>+. На сколько же именно? Как раз на столько, на сколько изменился бы потенциал, если б заряд оставили в покое, а Р сместили на столько же вниз (фиг. 6.5). Иначе говоря,
где Dz означает то же, что и d/2. Беря j>0=q/r, мы получаем для потенциала положительного заряда
(6.17)
Повторяя те же рассуждения с потенциалом отрицательного заряда, можно написать
(6.18)
А общий потенциал—просто сумма (6.17) и (6.18):
(6.19)
При других расположениях диполя смещение положительного заряда можно изобразить вектором Dг>+, а уравнение (6.17) представить в виде
где Dr впоследствии надо будет заменить на d/2. Завершая доказательство так, как это было сделано выше, мы приведем уравнение (6.19) к виду
Это то же уравнение, что и (6.16). Надо только заменить qd на р и вставить потерянный по дороге множитель 1/4pe>0. Взглянув на это уравнение по-иному, видим, что дипольный потенциал (6.13) можно толковать как
(6.20)
где Ф>0=1/4pe>0r — потенциал единичного точечного заряда.
Хотя потенциал данного распределения зарядов всегда может быть найден при помощи интегрирования, иногда можно сберечь время, применив какой-нибудь хитроумный прием. Например, на помощь часто приходит принцип наложения. Если нам дано распределение зарядов, которое можно составить из двух распределений с уже известными потенциалами, то искомый потенциал легко получить, просто сложив уже известные между собой. Наш вывод формулы (6.20) — один из примеров применения этого приема.
А вот и другой. Пусть имеется сферическая поверхность, на которой поверхностный заряд распределен пропорционально косинусу полярного угла. Интегрировать такое распределение— задача, откровенно говоря, не из приятных. Но как ни странно, на помощь приходит принцип наложения. Представьте себе шар с однородной