Лекции по физике 5a | страница 15



, действующее на j:


(6.5)

так что уравнение (6.4) мы запишем в виде

(6.6)

Оператор С>2 называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с мате­матической точки зрения заключается просто в изучении реше­ний одного-единственного уравнения (6.6). Как только из (6.6) вы найдете j, поле Е немедленно получается из (6.3).


Обратимся сперва к особому классу задач, в которых r задано как функция х, у, z. Такая задача почти тривиальна, потому что решать уравнение (6.6) в общем случае мы уже умеем. Мы ведь показали, что если r в каждой точке известно, то потенциал в точке (1) равен

(6.7)

где r(2) — плотность заряда, dV>2 — элемент объема в точке (2), а r>12 — расстояние между точками (1) и (2). Решение диф­ференциального уравнения (6.6) свелось к интегрированию по пространству. Решение (6.7) нужно отметить особо, потому что в физике часто встречаются ситуации, приводящие к уравнениям, которые выглядят так:

и (6.7) является прототипом решения любой такой задачи.

Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех за­рядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.

§ 2. Электрический диполь


Сначала возьмем два точечных заряда +qи -q, разделенных промежутком d. Проведем ось z через заряды, а начало коор­динат поместим посредине между ними (фиг. 6.1). Тогда по фор­муле (4.24) потенциал системы двух зарядов дается выраже­нием

Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.

Существует важный частный случай этой задачи, когда за­ряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незна­чительным. Такую тесную пару зарядов называют диполем. Диполи встречаются очень часто.

Фиг. 6.1. Диполь: два заряда +q и -q, удаленные друг от друга на расстояние d.

«Дипольную» антенну можно часто приближенно рассматривать как два за­ряда, разделенные неболь­шим расстоянием (если нас не интересует поле у са­мой антенны). (Обычно ин­терес представляют антенны с движущимися зарядами; уравнения статики тогда не­применимы, но для некоторых целей они все же представ­ляют весьма сносное приближение.)

Важнее, пожалуй, диполи атомные. Если в каком-то веще­стве есть электрическое поле, то электроны и протоны испыты­вают влияние противоположных сил и смещаются друг относи­тельно друга. Вы помните, что в проводнике некоторые электроны сдвигаются к поверхности, так что внутреннее поле обращает­ся в нуль. В изоляторе электроны не могут сильно разой­тись; им мешает притяжение ядра. И все же они как-то смеща­ются. Так что хотя атом (или молекула) и остается нейтральным, во внешнем электрическом поле все же возникает еле заметное разделение положительных и отрицательных зарядов, и атом становится микроскопическим диполем. Если нам нужно знать поле этих атомных диполей поблизости от предмета обычных размеров, то мы имеем дело с расстояниями, большими по срав­нению с промежутками между зарядами.