Лекции по физике 5a | страница 14
Мы показали, что если полость целиком окружена проводником, то никакое статическое распределение зарядов снаружи никогда не создаст поля внутри. Это объясняет принцип «защиты» электрического оборудования, которое помещается в металлическую коробку. К тем же рассуждениям можно прибегнуть, если нужно показать, что никакое статическое распределение зарядов внутри замкнутого сплошного проводника не может создать поля вне его. Защита действует в обе стороны! В электростатике (но не в изменяющихся полях) поля по обе стороны сплошной проводящей оболочки полностью не зависят одно от другого.
Теперь вы понимаете, почему удалось проверить закон Кулона с такой точностью. Форма полой оболочки не имела значения. Она вовсе не должна была быть круглой, она могла быть и кубом! Если закон Гаусса точен, то поле внутри всегда равно нулю. Вы понимаете теперь, почему вполне безопасно сидеть внутри высоковольтного генератора Ван-де-Граафа в миллион вольт, не боясь, что вас ударит ток, — Вас охраняет сам Гаусс!
Глава 6
ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ
§1.Уравнения электростатического потенциала
§2.Электрический диполь
§3.3амечания о векторных уравнениях
§4.Дипольный потенциал как градиент
§5.Дипольное приближение для произвольного распределения
§6.Поля заряженных проводников
§7. Метод изображений
§8.Точечный заряд у проводящей плоскости
§9.Точечный заряд у проводящей сферы
§10.Конденеаторы; параллельные пластины
§11.Пробой при высоком напряжении
§12.Ионный микроскоп
Повторить: гл. 23 (вып. 2) «Резонанс»
§ 1. Уравнения электростатического потенциала
В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятельствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математическими методами, используемыми для определения поля.
Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:
(6.1)
(6.2)
Фактически оба эти уравнения можно объединить в одно. Из второго уравнения сразу же следует, что поле может считаться градиентом некоего скаляра (см. гл. 3, § 7):
(6.3)
Электрическое поле каждого частного вида можно, если нужно, полностью описать с помощью потенциала поля j. Дифференциальное уравнение, которому должно удовлетворять j, получится, если (6.3) подставить в (6.1):
(6.4)
Расходимость градиента j—это то же, что С