Лекции по физике 8a | страница 68



Порядок величины классического взаимодействия между двумя магнитами должен был бы даваться произведением двух магнитных моментов, деленным на куб расстояния между ними. Расстояние между электроном и протоном в атоме водорода, грубо говоря, равно половине атомного радиуса, т. е. 0,5 А. Поэтому можно примерно прикинуть, что постоянная А должна быть равна произведению магнитных моментов m и m>p, делен­ному на куб половины ангстрема. Такая пристрелка приводит к числам, попадающим как раз в нужный район. Но оказывается, что А можно подсчитать и аккуратней, стоит только разобраться в полной теории атома водорода, что нам пока не по силам. На самом деле А было подсчитано с точностью до 30 миллион­ных. Как видите, в отличие от постоянной переброса А молекулы аммиака, которую по теории невозможно хорошо подсчитать, наша постоянная А для водорода может быть рассчитана из более детальной теории. Но ничего не поделаешь, нам для наших теперешних целей придется считать А числом, которое может быть определено из опыта, и анализировать физику дела.

Взяв гамильтониан (10.5), можно подставить его в уравнение

и посмотреть, что делает спиновое взаимодействие с уровнями энергии. Для этого надо подсчитать шестнадцать матричных элементов H>ij=<i|H|j>, отвечающих любой двойке из четырех базисных состояний (10.1).

Начнем с того, что подсчитаем, чему равно Н^ |j> для каж­дого из четырех базисных состояний. К примеру,

Пользуясь способом, описанным немного раньше (вспомните табл. 10.1, она очень облегчит дело), мы найдем, что каждая пара а делает с |+ +>· Ответ таков:

Значит, (10.7) превращается в


Таблица 10.2 · спиновые операторы ДЛЯ АТОМА ВОДОРОДА

А раз все наши четыре базисных состояния ортогональны, то это немедленно приводит к

Вспоминая, что Н|i>=<.i|H|j>*, мы сразу сможем на­писать дифференциальное уравнение для амплитуды С>1:

или

Вот и все! Только один член.

Чтобы теперь получить оставшиеся уравнения Гамильтона, мы должны терпеливо пройти через те же процедуры с H^, дей­ствующим на другие состояния. Во-первых, попрактикуйтесь в проверке того, что все произведения сигм в табл. 10.2 написаны правильно. Затем с их помощью получите

И тогда, умножая их все по порядку слева на все прочие векторы состояний, мы получаем следующую гамильтонову матрицу H>ij:

Это, конечно, означает, что дифференциальные уравнения для четырех амплитуд С>i имеют вид

Но прежде чем перейти к их решению, трудно удержать­ся от того, чтобы не рассказать вам об одном умном правиле, которое вывел Дирак. Оно поможет вам ощутить, как много вы уже знаете, хотя нам в нашей работе оно и не понадобит­ся. Из уравнений (10.9) и (10.12) мы имеем