Лекции по физике 8a | страница 60
Далее, состояния |n> (их N штук) могут, вообще говоря, тоже быть выбраны в качестве базиса. Для этого все состояния должны быть ортогональны в том смысле, что для любой нары их, скажем |n> и |m),
<n|m>=0. (9.68)
Это выполнится автоматически, если все энергии различны. Кроме того, можно умножить все а>i(n) на подходящие множители, чтобы все состояния были отнормированы: чтобы для всех n было
<n|n>=1. (9.69)
Когда оказывается, что (9.63) случайно имеет два (или больше) одинаковых корня с одной и той же энергией, то появляются небольшие усложнения. По-прежнему имеются две различные совокупности а>i, отвечающие двум одинаковым энергиям, но состояния, которые они дают, не обязательно ортогональны. Пусть вы проделали нормальную процедуру и нашли два стационарных состояния с равными энергиями. Обозначим их |m>и |v>. Тогда они не обязательно окажутся ортогональными: если вам не повезло, то обнаружите, что
Но зато всегда верно, что можно изготовить два новых состояния (обозначим их | m'> и |v'>) с теми же энергиями, но ортогональных друг другу:
Этого можно добиться, составив |m'> и |v'> из подходящих линейных комбинаций |m> и |v> с так подобранными коэффициентами, что (9.70) будет выполнено. Это всегда полезно делать, и мы будем вообще предполагать, что это уже проделано, так что можно будет считать наши собственноэнергетические состояния | n> все ортогональными.
Для интереса докажем, что когда два стационарных состояния обладают разными энергиями, то они действительно ортогональны. Для состояния |n> с энергией Е>n
Это операторное уравнение на самом деле означает, что имеется соотношение между числами. Если заполнить недостающие части, то оно означает то же самое, что и
Проделав здесь комплексное сопряжение, получим
Теперь вспомним, что комплексно сопряженная амплитуда — это амплитуда обратного процесса, так что (9.73) можно переписать в виде
Поскольку это уравнение справедливо для всякого i, то его можно «сократить» до
Это уравнение называется сопряженным с (9.71).
Теперь легко доказать, что Е>n— число вещественное. Умножим (9.71) на <n|. Получится
(с учетом, что <n|n>=1). Умножим теперь (9.75) справа на
|n>:
Сравнивая (9.76) с (9.77), видим, что
Е>n=Е>n*, (9.78)
а это означает, что E>n вещественно. Звездочку при Е>n>в (9.75) можно убрать.