Авиация и космонавтика 2006 11 | страница 14
Обьем исследований был значительно расширен после ввода в эксплуатацию в 1976 г. на базе Центра подготовки космонавтов (ЦПК) пило- тажно-исследовательского комплекса «Пилот-105» с задействованием в контур управления центрифуги ЦФ-7 (В.П.Найденов, А.В.Любимов).
Уделяя основное внимание созданию орбитального самолета, конструкторы фактически предложили к разработке семейство летательных аппаратов, основанных на единой оригинальной аэродинамической компоновке и имеющих близкие размеры и массы.
Создаваемые для разных целей и задач, внешне похожие аппараты должны были поэтапно, шаг за шагом, благодаря постепенному усложнению бортовых систем и расширению круга решаемых задач, приближать разработчиков к главной цели – семейству боевых орбитальных самолетов.
Сначала предлагалось создать самолет-аналог («50-11») для гиперзвуковых суборбитальных «прыжков» в космос, затем – экспериментальный пилотируемый орбитальный самолет (ЭПОС) для демонстрации реализуемости проекта и отработать на нем основные этапы орбитального полета и посадки.
Благодаря массо-габаритному сходству телеметрической аппаратуры и фотооборудования, ЭПОС можно было легко модифицировать в орбитальный фоторазведчик. И только потом должны были появиться боевые варианты орбитального самолета.
При знакомстве с вариантами орбитального самолета мы также будем следовать логике разработчиков, т.е. сначала расскажем об основных характеристиках, одинаковых для всех аппаратов, затем подробнее остановимся на самолетеаналоге и детально рассмотрим конструкцию и функционирование ЭПОСа, и уже затем при описании боевых вариантов орбитального самолета уделим внимание только их основным отличиям от ЭПОСа.
Модель орбитального самолета
Третий аппарат SV-5D (Х-23) в экспозиции музея ВВС США
При выборе формы и размерности аппарата пришлось учитывать следующие требования:
– температура внешних поверхностей самолета не должна превышать 1400 градусов С, т.к. эта температура являлась предельно-допустимой для единственного отработанного в то время конструкционного тугоплавкого материала;
– температурные поля на основных поверхностях самолета должны были быть возможно более равномерными для максимального снижения температурных напряжений;
– самолет должен при спуске с орбиты обладать запасом устойчивости, достаточным для полета на постоянном балансировочном угле атаки в диапазоне 45-65 градусов и минимальном (менее 5 градусов) угле скольжения, т.к. отклонения от этого диапазона углов атаки в большую или меньшую сторону и наличие углов скольжения (более 5 градусов) приводит к возрастанию температуры поверхности и увеличению градиентов температуры;