Откуда мы знаем, что такое точка? | страница 16
Выше мы уже говорили о том, что в преподавании начального курса логики имеются своеобразные трудности, связанные с отсутствием изоморфизма между естественным языком и языком, на котором написаны логические формулы.
Сейчас эта тема будет продолжена в несколько ином направлении.
Как хорошо известно, в математике не существует запрета на введение (временных) обозначений для несуществующих объектов. Например, если требуется решить в целых числах уравнение
то через x обозначают искомое (несуществующее) целочисленное решение, и лишь затем убеждаются, что такого решения нет.
Строго говоря, здесь следовало бы рассуждать от противного; однако, даже рассуждая со всей строгостью от противного, мы по-прежнему вынуждены вводить обозначение x для несуществующего объекта.
Здесь мы коснемся этого же вопроса применительно к преподаванию темы «Высказывания» в курсе логики. Разбирая эту тему, преподаватель неизбежно сталкивается с несуществующими объектами, которые ведут себя довольно парадоксальным образом.
Рассмотрим, например, высказывание:
Все Деды-Морозы делают подарки детям. (1)
Это высказывание, очевидно, следует считать истинным. Действительно, его отрицание выглядит следующим образом:
Существует Дед-Мороз, который не делает подарков детям. (2)
(Поскольку Дед-Мороз не существует, высказывание (2) – ложно, и, значит, высказывание (1) истинно.) В высказывании (1) мы имеем дело с (пустым) множеством, состоящим из всех Дедов-Морозов; ситуация радикально меняется, если мы имеем дело не с множеством, а с «единичным объектом», которого на самом деле не существует.
Действительно, рассмотрим теперь такое высказывание:
Дед-Мороз принес подарок Васе. (1)
Однако (1) в отличие от (1), очевидно, ложно! Дело в том, что (1), в сущности, следует рассматривать не как простое, а как составное высказывание:
Дед-Мороз существует и Дед-Мороз принес подарок Ване. (1)
Итак, здесь мы вновь столкнулись с неизоморфностью естественного языка и языка формальной логики, о чем, без сомнения, следует помнить преподавателю.
Теперь мы обсудим некоторые довольно любопытные вопросы, касающиеся взаимодействия хода логических рассуждений с ходом времени.
Общеизвестно, что никакое минимально содержательное рассуждение в естественном языке не может обойтись без слов «если…, то…». В логике аналогом этого союза является операция