Откуда мы знаем, что такое точка? - Александр Александрович Локшин

Бесплатно читаем книгу Откуда мы знаем, что такое точка? - Александр Александрович Локшин без сокращений! Чтобы читать полную версию, не нужна регистрация на сайте. Помните, что чтение доступно как на компьютере, так и на Андроиде, Айфоне и любом другом телефоне.
Откуда мы знаем, что такое точка? - Александр Александрович Локшин

Александр Александрович Локшин - Откуда мы знаем, что такое точка? о чем книга


Загадочная и завораживающая книга, которая перенесет вас в мир историй и приключений, полный неожиданных поворотов и фантастических миров. Ее страницы наполняются живыми персонажами, каждый из которых несет свой неповторимый след в плетении сюжета. В этой книге вы найдете мудрость, вдохновение и множество важных уроков жизни. Взлетите на крыльях воображения и отправьтесь в увлекательное путешествие между ее строками, где мир становится вашим собственным волшебным приключением.

Читать онлайн бесплатно Откуда мы знаем, что такое точка?, автор Александр Александрович Локшин


А.А. Локшин, Е.А. Иванова

Откуда мы знаем,
что такое
точка?

Пособие

МОСКВА – 2011

УДК 51

ББК 22.1

Л73

Локшин А.А., Иванова Е.А.

Л73

Откуда мы знаем, что такое точка?: Пособие. – М.: МАКС Пресс, 2011. – 40 с.

ISBN 978-5-317-03565-5

Пособие адресовано школьным учителям, а также студентам педвузов и педагогических колледжей, изучающим математику. Рассмотрены вопросы моделирования при решении текстовых задач, а также избранные авторами темы из комбинаторики, логики, алгебры и геометрии.

УДК 51

ББК 22.1

ISBN 978-5-317-03565-5

© Локшин А.А., Иванова Е.А., 2011

СОДЕРЖАНИЕ

Предисловие4

1. Парадокс математической индукции6

2. Откуда мы знаем, что такое точка?7

3. Текстовые задачи: какой метод предпочесть?9

4. Мысленное моделирование при решении текстовых задач11

5. Усохшие проценты14

6. Правило произведения в комбинаторной задаче о маршрутах16

7. Об одном комбинаторном соотношении21

8. Чему равен нуль-факториал?22

9. Задача о составлении букета24

10. О некоторых трудностях в преподавании логики25

11. Несуществующие объекты и математическая логика27

12. Импликация и время28

13. Коварный куб31

14. Почему деление не дистрибутивно слева?32

15. Обобщенная диаграмма Эйлера33

16. Змей Горыныч и транзитивность35

Литература38

Список обозначений39

ПРЕДИСЛОВИЕ

В брошюре рассмотрены некоторые вопросы из теории множеств, логики, комбинаторики и элементарной геометрии, недостаточно освещенные в имеющейся литературе и представляющие, на взгляд авторов, интерес для студентов пединститутов

(в особенности, для студентов факультетов начальных классов), школьников-старшеклассников и учителей математики.

Авторы

Москва, 2011

1. ПАРАДОКС МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ

Метод математической индукции является, как известно, могучим инструментом, позволяющим доказывать многие математические утверждения, не поддающиеся иным методам. Соль метода в том, что он позволяет, так сказать, «опереться на недоказанное».

В простейшем случае действие метода выглядит так. Пусть имеется некоторое утверждение A(n), зависящее от натурального номера n (n = 1,2,…). Тогда если A(1) истинно и если из истинности A(n) следует истинность A(n+1), то A(n) истинно при всех натуральных n.

Итак, доказывая истинность A(n+1), мы можем опереться на недоказанную истинность A(n) – великолепная возможность, которую не предоставляют никакие другие методы. (Как мы увидим ниже, за этой возможностью скрывается довольно любопытный парадокс.)

Приведенная выше формулировка метода математической индукции может быть кратко записана, с использованием общепринятых математических терминов, в следующем виде:

Вы автор?
Жалоба
Все материалы размещаются на сайте его пользователями.
Если Ваша книга была опубликована без Вашего ведома и/или без Вашего согласия, пожалуйста, напишите нам, и мы в срочном порядке примем меры.