Математика для гуманитариев: живые лекции | страница 8
Может быть, у кого-то есть идеи?
Слушатель: Взять площадь каждой фишки и разделить на нее общую площадь поля.
А.С.: Ничего не выйдет. Общая площадь 62, у каждой фишки 2, значит нужна 31 доминошка, это мы понимаем. Но 30 умещается, а 31 нет (рис. 6).
Последняя доминошка распадается на два квадратика в разных местах. И что бы вы ни делали, последняя будет, как заколдованная, распадаться на два квадратика.
Теперь я доказываю, что замостить доску доминошками невозможно.
Ведь перед нами, по сути, шахматная доска. Давайте вернем ей ее шахматный вид. Клетки на ней будут то черные, то белые (рис. 7).
После вырезания двух угловых квадратиков, сколько черных и сколько белых клеточек останется?
Слушатель: Одних будет больше, других меньше.
Слушатель: Одна доминошка должна покрывать и белую, и черную, да?
А.С.: Кто-то уже всё понимает (см. рис. 8). Любая доминошка, уложенная на эту доску, покрывает и белую, и черную клет-
ку. Поэтому, если бы фигуру, которую я сейчас нарисовал, можно было бы заложить доминошками, черных и белых клеток было бы одинаковое количество. Но мы вырезали две белых. Осталось 30 белых и 32 черные клетки. Противоречие. Количества черных и белых клеток не равны друг другу. Значит, нашу фигуру нельзя замостить доминошками. Абсолютное доказательство закончено. Не надо ничего перебирать.
Повторю еще раз.
Я взял урезанную с двух сторон шахматную доску. Исходная шахматная доска имела 32 черные и 32 белые клетки. А в урезанной шахматной доске пропали две белые угловые клетки. Поэтому стало 30 белых и 32 черных. Теперь предположим на секундочку, что мы решили задачу, и все клетки заполнены доминошками. Следует заметить, что каждая доминошка обязана лежать одной своей половиной на черной, а другой своей половиной на белой клеточке, как ты ее ни клади. Следовательно, если бы мы смогли замостить эту фигуру доминошками в количестве 31 штуки, то была бы 31 черная и 31 белая клетка. У нас же 32 черные и 30 белых клеток. А значит, замостить обрезанную доску нельзя. В этом и состоит препятствие, как говорят математики, препятствие к решению задачи. Заметьте, что мы проводили доказательство от, противного. Это очень важный прием. Я предположил, что мы задачу решили, и привел ситуацию к явному противоречию.
Переходим к более сложному сюжету — «разоблачению игры в пятнадцать».
Сейчас вы узнаете тайну, которую почти никто не знает: почему в пятнашки нельзя «выиграть», то есть перевести игру из позиции на рис. 2 в исходную позицию на рис. 1. Посмотрим на измененную позицию: