Математика для гуманитариев: живые лекции | страница 5



($1000) тому, кто переведет комбинацию с картинки рис. 2 в исход­ную позицию на рис. 1.

Что же означает в этой игре «абсолютное доказательство»? Это значит: какие бы действия вы не совершили, сколько бы времени и каким количеством способов бы не передвигали фишки, вы ни­когда, ни при каких условиях не вернетесь из позиции на рис. 2 в исходную позицию на рис. 1. В частности, если кто-то предъявил такое решение, значит он — лгун. Он, видимо, взял, выдрал фиш­ки из коробки и расставил их в правильном порядке. Абсолютное доказательство — это точное, настолько точное утверждение, на­сколько вообще что-то может быть точным. Математика — наука точных утверждений. Не «примерно», не «может быть», не «скорее всего, не приведете», а никогда, ни при каких условиях не приве­дете, какие бы способности к этой игре у вас ни были.

Я постараюсь доказать эту теорему. Но что значит «постараюсь доказать»? Что вообще означает «доказать»? Что значит «я ее докажу»? Как вы это понимаете?

Слушатель: Мы будем убеждены.

А.С.: Вот именно. Я найду способ вас убедить. Но с другой стороны, это не совсем то, что нам нужно.

Расскажу такую историю. Один рыцарь объяснял другому ры­царю математику. Первый рыцарь был очень умный, а второй — очень глупый. Второй рыцарь никак не мог понять доказательство. И тогда умный рыцарь говорит: «Честное благородное слово, это так». И второй сразу поверил: «Ну, тогда о чем разговор. Мы же с Вами люди безупречной чести, и я, конечно, Вам верю. Я полно­стью убежден».

У нас разговор пойдет не о таком способе убеждения. Идея ма­тематического, абсолютного доказательства не в том, что я дам честное слово, а в том, что я, апеллируя к вашему разумению, передам вам какое-то знание, которое вы потом столь же спокой­но передадите дальше. Вы придёте и скажете: «Мы знаем, поче­му в “пятнашки” бессмысленно играть. Мы это знаем совершенно точно, нам это доказал Алексей. И не просто доказал при помощи какого-то там шаманства, пошаманил-пошаманил и сказал, что нет решения у этой задачи. Мы получили такое знание, которое смо­жем воспроизвести и доказать, что выиграть в игру “пятнашки” невозможно».

Насчет пошаманить есть очень поучительный эпизод из жиз­ни математиков. В начале XX века жил в Индии математик Сри­ниваса Рамануджан. На момент начала нашей истории ему было 26 лет. Он заваливал письмами лондонское математическое обще­ство, в которых были формулы, содержащие числа «7Г» и «е» (мы с ними позже познакомимся) и страшные бесконечные суммы, ко­торым эти выражения равны. В Лондоне проверяют — всё верно. А Рамануджан присылает всё новые и новые письма. Профессор математики Г. Харди приглашает его приехать в Англию и рас­сказать, как он выводит эти формулы. Рамануджан отвечает, что формулы сообщает ему во сне богиня Маха-Лакшми1. Харди, ко­нечно, посмеялся, решив, что индус не хочет делиться секретом.