Математика для гуманитариев: живые лекции | страница 16
А теперь рассмотрим поближе футбольный мяч. Он состоит из шестиугольников и пятиугольников: двадцати шестиугольников и двенадцати пятиугольников.
Зачем? Почему так сложно? Вот вы, допустим, шьете футбольные мячи, чем вам не угодили просто шестиугольники? Взяли, сшили их по краям. Плоскость, например, отлично замощается шестиугольниками .
Слушатель: Но они, может быть, в мяч не сложатся.
А.С.: Давайте попробуем сложить огромный мяч. Возьмите 200. 300 шестиугольников. Плоек ость-то элементарно замощается? Вот так. как я нарисовал. Пчелиные соты (рис. 23).
Слушатель: Они на стыках но будут совпадать.
А.С.: Ну тут-то. на плоскости, вроде всё совпадает. А потом взял, свернул очень большой кусок плоскости и получил мяч.
Слушатель: Не остается места для того, чтобы правильно согнуть.
А.С.: Я даже не знаю, как выразить простым языком Ваше правильное интуитивное замечание. Но математическая теория этого вопроса неумолима. Из шестиугольников нельзя собрать поверхность шара. Вообще, никак, никаким способом даже если их нарисовать на поверхности шара в слегка искривленном виде6
'edels/liexaspliere/. Обратите внимание па дату публикации :-))))·.
Слушатель: А из пятиугольников?
А.С.: Сейчас мы проясним ситуацию, связанную с пятиугольниками. Во-первых, давайте договоримся о том. что сшивать надо так. чтобы в каждой вершине сходилось три образующих поверхность мяча многоугольника. Будем называть такую сшивку регулярной. Сразу скажу, что никакой, регулярной ли. не регулярной.
никакой сшивкой из шестиугольников нельзя сшить футбольный мяч. Но давайте сейчас рассмотрим подробно регулярные сшивки. Возьмем всевозможные футбольные мячи, любого размера, которые составлены из пятиугольников и шестиугольников.
Неожиданная теорема:
Если поверхность шара «сшита» регулярным образом из некоторого количества х шестиугольников и некоторого количества у пятиугольников, то у обязательно равно 12.
Слушатель: В любом случае?
А.С.: В любом. Как ни экспериментируй, что ни делай, чему бы х ни равнялось, х = 200, х = 300, ... Но у = 12. Ровно 12, не 12 ООО, не 120. От размера мяча не зависит, от размера лоскутков не зависит, от того, как сшивать, не зависит. Это — математическая теорема.
Слушатель: Невероятно...
А.С.: Есть абсолютное доказательство этой теоремы. Если вы хотите сшить футбольный мяч из пятиугольников и шестиугольников, пятиугольников обязательно будет ровно 12.
Слушатель: Какой диаметр?