Математика для гуманитариев: живые лекции | страница 14
1, 2, 3, 4, 8, 6, 5, 9, 10, 7, 11 ...
Выделяю в змейке группу, которая менялась.
Было: 1, 2, 3, 4, 8, (7, 6, 5, 9, 10), 11, 14, 12, 15, 13. Стало: 1, 2, 3, 4, 8, (6, 5, 9, 10, 7), 11, 14, 12, 15, 13.
6, 5, 9, 10 переехали на шаг левее, а 7 через них перепрыгнула. Сколько будет изменений? Ровно 4. Пары опять поменялись. Правильные стали неправильными, и наоборот. Опять каждый раз мы прибавляем или отнимаем единицу. И так 4 раза. А 4 ведь — четное число, вот незадача. Опять результат меняется на четное число.
Что мы можем еще сделать? Мы могли вместо 7 подвинуть 12 (рис. 22). Тогда 12 прыгнет за пару (11,14). Изменятся ровно две пары.
Слушатель: То есть нечетное число поменяться не может.
А.С.: Ни при каких условиях. Мы уже знаем, что движение по горизонтали — бессмысленно. Получится та же самая змейка. Если мы движемся сверху вниз, то количество неправильных пар меняется либо на 2, либо на 4, либо на 6, либо ничего не меняется. Можно честно перебрать все возможные переходы снизу вверх. Можно просто понять, что никаких других вариантов, кроме четных, нет. То есть в пятнашку выиграть нельзя, потому что в стандартной исходной позиции количество неправильных пар 8, и изменить его можно только на четное число. А в требуемой позиции имеется 9 неправильных пар.
Слушатель: Из любой ли позиции выиграть невозможно?
А.С.: Почему? На самом деле из половины всех исходных позиций. Из половины невозможно, из половины возможно. Потому что в «высокой» математике учат, что половина последовательностей имеет четное число неправильных пар, а половина — нечетное4. Поэтому половина вариантов будет собираться в стандартную исходную позицию. Если пятнашки как угодно перемешать, вывалив из коробки и затем вставив обратно как придется, то перестановкой фишек всегда можно прийти либо к случаю «13, 14, 15», либо к случаю «13, 15, 14».
Чтобы понять, можно ли привести фишки в исходную позицию, нужно посчитать количество неправильных пар в змейке, соответствующей изучаемой исходной позиции. Если оно нечетное — привести к исходной позиции можно. Если четное — то нельзя.
Слушатель: Какие числа можно поменять местами?
Другой слушатель: Например, 1 и 3 можно поменять?
А.С.: Если я меняю 1 и 3 местами (было 1, 2, 3, — стало 3, 2, 1), то как изменилась четность? Было отсутствие беспорядков (то есть 0), стало три беспорядка. Четность, стало быть, изменилась. Так что поменять в игре «пятнадцать» 1 и 3 местами, сохраняя остальные фишки на своих местах, тоже невозможно. Ваши вопросы относятся к