Математика для гуманитариев: живые лекции | страница 13



Слушатель: (8,7).

А.С.: (8,7). Здесь теперь (7,8); а еще?

Слушатель: (8,6), (8,5) ...

А.С.: При том движении, которое я произвел, поменяют взаим­ное расположение чисел только те пары, в которых участвовало число 8. Поэтому 6 пар изменили тип монотонности. Если были возрастающими — стали убывающими, и наоборот.

Рассмотрим каждую пару в отдельности.

Было (8, 5) (числа в порядке убывания), стало (5, 8) — возраста­ние. Количество неправильных пар изменилось на единицу вниз.

Было (8,10), стало (10,8), количество неправильных пар измени­лось на единицу вверх. С остальными парами — то же самое. Ка­ждый раз мы добавляем или вычитаем единицу. Не может быть, чтобы где-то (вместо плюс/минус единицы) получился нуль, так как среди указанных шести чисел нет восьмерок (ведь каждое чи­сло, написанное на фишке, единственно).

Вне зависимости от знаков, количество изменивших тип моно­тонности пар всегда четно. Имеется 64 способа расставить знаки, но в результате всегда в качестве суммы получится четное число. Соседние плюс/минус единички либо добавят к сумме 2, либо до­бавят (—2), либо взаимно уничтожатся, давая ноль:

±1 ± 1 ± 1 ± 1 ± 1 ± 1

В каждой паре соседних плюс/минус единичек получится или 0, или 2 или —2. То есть общее изменение количества «неправильных пар» может произойти на 6, 4, 0, —2, —4, —6.

Изменения происходят на четную величину, поэтому исходное количество «беспорядков» (оно было равно 8) могло стать чи­слом 14, если все единички оказались бы с плюсом, могло остать­ся 8 (если бы было +1, +1, +1, —1, —1, —1). Могло стать 6, могло 4 или 2. Но никак не могло стать ни 5, ни 7.

В принципе, на этом месте я мог бы сказать «остальное проверь­те сами», потому что в других случаях передвижения пустой фиш­ки происходит ровно тот же самый эффект. Но давайте для акку­ратности проверим что-нибудь еще. Например, вверх могло пойти число 14 (вместо того, чтобы опустить вниз число 8) (см. рис. 20).

Что произойдет, где начались изменения? Только в нижних двух строках. Было 1, 2, 3, 4, 8, 7, 6, 5, а потом вместо 9, 10, 11, 14, 12, 15, 13 мы увидели 9, 10, 11, 14, 12, 15, 13. Ничего вообще не изменилось.

Давайте теперь представим себе внутреннюю пустую фишку. Скажем, если в позиции на рис. 18 клеточку 11 сдвинули к краю, а 7 сдвинули вниз (рис. 21):

Выпишем змейку до того, как подвинули 7:

1, 2, 3, 4, (8, 7, 6, 5, 9, 10, 11), 14, 12, 15, 13.

Теперь я двигаю 7 вниз и получаю вот такой фрагмент змейки: