Математика для гуманитариев: живые лекции | страница 12



Слушатель: 9.

А.С.: Да. 9. Мы находимся на подступах к пониманию. Сейчас я покажу, что никакие изменения пустого места не меняют чет­ности, количества неправильных пар. Само количество, конечно.

меняется. У нас оно пока равно 8. однако, если перемешать все фишки, согласно правилам игры «15». то количество неправиль­но стоящих нар изменится. Но удивительный факт состоит в том. что вы никогда не измените четности, этого количества. Само ко­личество будет прыгать в сторону увеличения или уменьшения, но только на 2. на 4. на 6. словом, на ЧЕТНОЕ число единиц.

Начнем доказывать это утверждение. Где-то есть пустое место в коробке 4x4 (пусть конфигурация чисел, окружающих его. та­кая. как на рис. 16).

Пустое место может сдвинуться в 4 направлениях (рис. 17).

Давайте рассмотрим все 4 варианта и посмотрим, что произой­дет со змейкой.

Что происходит с выписанной змейкой чисел, если я передвигаю клетку с числом 11 налево?

Слушатели: Ничего.

А.С.: Правда. А что происходит со змейкой, если я передвигаю клеточку с числом 9 направо?

Слушатели: Ничего.

А.С.: Ответ верный. Два других варианта немного более слож­ные. но совершенно однотипные.

Что происходит, когда клетка движется сверху вниз или снизу вверх?

Слушатель: У нас появляются неправильные нары.

А.С.: Да. у нас либо появляются, либо пропадают неправиль­ные пары. Вопрос, сколько таких пар появляется и сколько про­падает? Ответ на этот вопрос зависит от того, где стояло пу­стое место. И вот здесь придется рассмотреть уже 4 варианта, но не для исходной стандартной змейки, а для любой. От самых простых в сторону самых сложных. Например, пусть в третьей строке получилось «9. 10. 11. пусто» (а номер 12 оказался в че­твертой строке за счет каких-то предыдущих перемещений) (см. рис. 18).

Записываю фрагмент змейки:

...8, 7, 6, 5, 9, 10, 11, пусто ...

Нас интересует только этот фрагмент, потому что при движении, которое будет совершено, слева и справа в змейке ничего не из­менится. Будет меняться только этот набор цифр. Расположение остальных пар не меняется. Внимание: «8» пошло вниз, пустыш­ка — наверх (рис. 19).

Как теперь будет выглядеть середина змейки? Вот так:

... пусто, 7, 6, 5, 9, 10, 11, 8 ...

Что произошло? Восьмерка из начала группы скакнула в ко­нец. Какие пары свое значение поменяли? Группа из шести чи­сел (7, 6, 5, 9,10,11) целиком сохранилась. Она просто поменялась местами с восьмеркой. Значит, какие пары поменяли, как говорят математики, «свой тип монотонности», то есть возрастание смени­лось убыванием (или, наоборот, убывание — возрастанием)?