Гильберт. Основания математики | страница 70
Иерархическая конструкция вселенной множеств, разработанная фон Нейманом.
С тех пор она известна как аксиоматика ZF (по их инициалам) теории множеств. Итак, в ZF парадокс класса Рассела превращается в доказательство того, что этот класс не является множеством, другими словами, что его не существует в рамках этой теории, в связи с чем антиномия испаряется в воздухе. Если мы предположим, что R — это множество, и столкнемся с абсурдом, это будет означать, что R — не множество.
Аналогично, парадокс Кантора превращается в доказательство того, что «множество» всех множеств V — это не множество, поэтому его также не существует внутри теории. В ZF такая загадка, как парадокс брадобрея, демонстрирует отсутствие существования индивидуума с этими характеристиками. Более того, аксиомы ZF блокируют цикличность, которая с помощью различных стратегий делает очевидной несостоятельность парадоксов. Формулы типа R ϵ R запрещены в ZF, поскольку в аксиоме основания, или регулярности, установлено, что ни одно множество не принадлежит самому себе, то есть (перевернутое A)x(x /ϵх).
При этой аксиоме опасных множеств просто не существует.
Следует заметить, что при наличии ZF не только были устранены парадоксы неформальной теории множеств, но и стало возможным омножествление математики: с определением функции как множества упорядоченных пар, предложенным Феликсом Хаусдорфом (1868-1942) и Казимиром Куратовским (1896-1980) чуть позже, это понятие (столп анализа) оказалось омножествленным, что упрочило обоснование математики с помощью множеств. Все головокружительное разнообразие математических структур оказалось сведено к их самым базовым компонентам — множествам.
Однако работы Цермело вызвали большой ажиотаж и крайне враждебную реакцию специалистов. Пытаясь доказать континуум-гипотезу, в 1904 году Цермело сформулировал аксиому выбора. Эта аксиома гласит, что можно одновременно выбрать элемент каждого множества из бесконечного собрания непустых множеств. Формально если S = {А, B, С,...} — это собрание непустых множеств, то существует множество Z, которое состоит ровно из одного элемента множества А, одного из B, одного из С и так далее. Бертран Рассел объяснял это на следующем примере. Представим себе миллионера, который, каждый раз покупая пару туфель, покупает и пару носков. Предположим, он уже обладает бесконечным набором коробок с туфлями и таким же количеством упаковок с носками. Если бы он хотел удостовериться, что у него действительно равное количество пар туфель и носков, он мог бы доставать по одному правые туфли и находить им пару из одного носка (или если бы коробки с туфлями и неоткрытые упаковки носков закончились одновременно, он бы знал, что их у него одинаковое количество). Но он не может совершить последнее действие, не применив аксиому выбора, поскольку эта аксиома позволяет осуществлять бесконечное число произвольных выборов в коллекции наборов носков (в то время как из каждой коробки туфель он всегда может выбрать правый, между носками нет никакой разницы, поскольку не существует правого носка, отличного от левого).