Гильберт. Основания математики | страница 68



Георг Кантор.




Между тем Дедекинд дал более удачное определение бесконечному множеству, чем Кантор. По прошествии времени оба определения, избавленные от ошибок, оказались равносильными (в соответствии с аксиомой выбора, о которой речь пойдет позже). Для Кантора множество бесконечно, если оно не конечно, то есть если нельзя провести биекцию с каким- нибудь натуральным числом. Для Дедекинда, наоборот, под влиянием предположений Галилея и Больцано, множество бесконечно только тогда, когда можно провести биекцию с его собственной частью. Например, натуральные числа бесконечны, потому что можно провести биекцию с четными числами, при этом 0 соответствует 0; 1 - 2; 2 - 4; и в целом каждому числу n — вдвое большее число 2n.


Его теория представляется мне наиболее заслуживающим удивления цветком математического духа и вообще одним из высших достижений чисто умственной деятельности человека. [...] Никто не изгонит нас из рая, который создал нам Кантор.

Давид Гильберт о Георге Канторе, «О бесконечном» (1925)


К концу 1882 года Кантор разработал свою арифметику кардинальных и порядковых (трансфинитных) чисел, а также выдвинул континуум-гипотезу. Натуральные числа образуют бесконечное множество наименьшего размера, который мы можем вообразить. Следовательно, его кардинальное число, то есть первое бесконечное кардинальное число, обозначается буквой алеф еврейского алфавита с нижним индексом 0: ϰ>0. Это кардинальное число соответствует всем счетным множествам, и это первая веха на пути к бесконечности. Кардинальное число континуума, действительных чисел, равно (по ряду сложных причин) 2>0. При таких условиях континуум-гипотеза устанавливает, что нет никакой другой бесконечности между натуральными и действительными числами, или, говоря другими словами, что 2>0>1 Последовательность кардинальных чисел ϰ>0, ϰ>1, ϰ>2,... работает как своего рода модель для измерения размера вселенной множеств, где существует бесконечное число бесконечностей. Безрезультатные попытки доказать континуум-гипотезу и постоянные нападки Кронекера на теорию трансфинитных множеств спровоцировали у Кантора депрессию, которая отдалила его от математики и подтолкнула в сторону теологии (он также увлекался идеей, что Бэкон был истинным автором произведений Шекспира).

С 1900 года теория Кантора, как и логика, стала мостом над бурными водами. Параллельно с логическими парадоксами возникли антиномии теории множеств. Большинство парадоксов, в которых говорилось о классах, были переформулированы с помощью теории множеств (например, парадокс Рассела). Но появились и новые: парадоксы бесконечности. В то время как логические парадоксы были связаны с цикличностью определения некоторых классов, парадоксы множеств отсылали к бесконечности. Главный в их числе — парадокс Кантора о собрании всех множеств. Пусть V — «множество» всех множеств. Поскольку, как доказал Кантор, кардинальное число любого множества меньше кардинального числа его показательного множества (которое обозначается ϑ(A) и включает в себя все подмножества или части A), получается, что |V| < |ϑ(V)|. С другой стороны, из определения V следует, что показательное множество V должно содержаться в V, поскольку V — это абсолютное множество, самое большое, которое включает в себя все остальные, и нет ничего выше него. Поэтому |V| ≥ |ϑ(V)|, что является абсурдом, противоречием по отношению к предыдущему результату.