Новый взгляд на мир. Фрактальная геометрия | страница 41



и будет длиной заданной кривой. Для вычисления площадей используются аналогичные рассуждения с той лишь разницей, что вместо длин отрезков вычисляется площадь прямоугольников.

В приведенном примере мы используем различные объекты, имеющие топологическую размерность 1 (отрезки), чтобы вычислить приближенное значение объекта такой же размерности (кривой). Алгоритм действий удивительно остроумен и в то же время интуитивно понятен.

Существует ли вероятность аппроксимации объектов любой евклидовой размерности с помощью других объектов меньшей размерности? Например, можно ли найти приближенное значение площади квадрата с помощью кривой? Интуитивно понятно, что это невозможно: кривые не имеют толщины, следовательно, не могут покрывать пространство полностью. Иными словами, объект, имеющий топологическую размерность 1 (кривую) нельзя преобразовать в объект размерности 2 (например, в квадрат). Кажется, что предполагать обратное было бы попросту нелепо.


Кривая Пеано

Итальянский математик Джузеппе Пеано в 1890 г. открыл непрерывную кривую, проходящую через все точки квадрата с единичной стороной, то есть кривую размерности 1, которую можно преобразовать в объект размерности 2. Пеано следовал тем же путем, что и Кантор, который ранее доказал противоречащее интуиции утверждение: мощность бесконечного множества точек отрезка единичной длины равна мощности бесконечного множества точек любой поверхности, например квадрата с единичной стороной. Подробнее мы рассмотрим это революционное открытие несколько позже[18].

Интуиция подсказывает, что непрерывная кривая — это «путь, которым следует точка при непрерывном движении». Чтобы устранить неоднозначность определения и подчеркнуть значимость открытия Пеано, Жордан в 1887 г. ввел следующее строгое определение непрерывной кривой: «Непрерывная кривая является непрерывным отображением отрезка, определенным для всех точек единичного отрезка». Стандартный алгоритм построения кривой Пеано — это повторяющийся процесс, при котором каждый из девяти отрезков исходной кривой заменяется кривой, сгенерированной на каждой итерации алгоритма.

Девять отрезков исходной кривой приведены на рисунке ниже (первый отрезок обозначен цифрой 1 и так далее):



Затем процесс повторяется для каждого из девяти исходных отрезков (иными словами, каждый из девяти отрезков заменяется всем рисунком) и так далее. В результате получим кривую следующего вида (на нижней тройке изображений углы срезаны, чтобы наглядно показать, что кривую Пеано можно построить, не отрывая карандаша от бумаги).