Золотое сечение. Математический язык красоты | страница 69
Значит, прямая АВ рассечена в Е в крайнем и среднем отношении, и больший ее отрезок АЕ.
Хотя именно в шестой книге рассказывается о золотом сечении, Евклид уже упоминал эту пропорцию в предложении 11 второй книги, где он пытается решить геометрическим способом уравнение (а — х) = х>2. Фактически это предложение аналогично предложению 30 из шестой книги, отличие лишь в терминологии. Можно сказать, что предложение 11 второй книги является первым предложением, в котором появляется золотое сечение, но автор, похоже, хотел уделить этим вопросам больше внимания позже. Во второй книге Евклид скрывает их под задачей о прямоугольниках. В любом случае, он этим демонстрирует, что любая задача, связанная с пропорциональными отрезками, может быть сформулирована как задача о прямоугольниках.
Книга II
Предложение 11. Данную прямую рассечь так, чтобы прямоугольник, заключенный между целой и одним из отрезков, был равен квадрату на оставшемся отрезке.
Пусть данная прямая будет АВ.
Следовательно, требуется АВ рассечь так, чтобы прямоугольник, заключенный между целой и одним из отрезков, был равен квадрату на оставшемся отрезке.
Надстроим на АВ квадрат ABDC и рассечем АС пополам в точке Е и проведем BE. Продолжим СА до F, отложим EF, равную BE. Надстроим на AF квадрат FH и продолжим СН до К.
Поскольку АС рассечена пополам в Е и к ней прикладывается FA, то значит, прямоугольник, заключенный между CF, FA вместе с квадратом на АЕ, равен квадрату на EF. EF же равна ЕВ; значит, прямоугольник между CF, FA, вместе с квадратом на АЕ, равен квадрату на ЕВ. Но квадрату на ЕВ равны квадраты на ВА и АЕ, ибо угол при А прямой; значит, прямоугольник между CF, FA вместе с квадратом на АЕ равен квадратам на ВА и на АЕ. Отнимем общий квадрат на АЕ; остающийся прямоугольник, заключенный между CF, FA равен квадрату на АВ. И прямоугольник между CF, FA есть FK, ибо AF равна FC; квадрат же на АВ есть AD; значит, FK равно AD. Отнимем общий АК, значит, остаток FH равен НА. И НА есть прямоугольник между АВ, ВН, ибо АВ равна BD; FH же есть квадрат на АН; значит, прямоугольник, заключенный между АВ и ВН, равен квадрату на НА.
Значит, данная прямая АВ рассечена в Н так, что прямоугольник, заключенный между АВ и ВН, она делает равным квадрату на НА.
«Книга абака» Фибоначчи — довольно объемная работа, наполненная интересными задачами из арифметики и алгебры, с которыми ее автор сталкивался в путешествиях. Намерение Фибоначчи заключалось в том, чтобы продемонстрировать преимущества индо-арабской десятичной системы, а также способствовать ее распространению в Европе. В первом параграфе его книги впервые для Запада появились цифры, которые мы используем и сегодня.