Юный техник, 2015 № 02 | страница 12



Когда белок поглощает свет с длиной волны 488 нм, флуоресценция начинается, но спустя некоторое время исчезает. И, независимо от количества света, направляемого на белок, ответного излучения не возникает. Но, если использовать свет с длиной волны 405 нм, то молекула белка снова начинает флуоресцировать.



Схема работы люминесцентного микроскопа.



Так выглядит клетка в тот момент, когда испускает свечение.



Снимки микрообъектов, полученные при помощи флуоресцентной микроскопии.


Мернер распределил эти молекулы GFT в геле так, чтобы расстояние между каждой отдельной молекулой было больше, чем дифракционный предел Аббе. Из-за того, что они были рассеяны столь редко, микроскоп оказался в состоянии регистрировать свечение отдельных молекул. О своей работе Мернер рассказал в журнале Nature в 1997 году.

Полученные Мернером результаты помогли Эрику Бетцигу. Он догадался, что если микроскоп будет регистрировать излучение молекул с определенной длиной волны, рассеянных в образце не ближе друг к другу, чем 0,2 мкм (приблизительная величина предела Аббе), то положение может быть определено с высокой точностью. Если же в образце будут молекулы с разными свойствами, например, дающие при флуоресценции ответное излучение с разной длиной волны, то можно сделать отдельные картины распределения каждого «вида» молекул. После этого можно, накладывая изображения друг на друга, добиться разрешения, превышающего предел Аббе. Молекулы будут различимы, даже если расстояние между ними составит всего несколько нанометров.

Эти идеи Бетциг высказал в своей публикации в журнале Optics Letters в 1995 году, но реализовать их казалось невозможным, так как не находилось молекул с нужными свойствами. Бетциг на некоторое время оставил академическую деятельность, но продолжал следить за публикациями и вернулся к работе в области микроскопии, как только узнал об исследованиях GFP. К 2005 году он разработал свой метод преодоления предела Аббе. Молекулы не испускали свет разного цвета, как он предполагал ранее, а начинали светиться в разные моменты времени. Этого оказалось достаточно, чтобы получить набор изображений, из которых сложится одно — уже со сверхвысоким разрешением. Метод получил название «микроскопия локализованной фотоактивации».

Как поясняется в сообщении Нобелевского комитета для прессы, новаторство ученых заключается в том, что световую микроскопию они подняли до уровня наноизмерений. После работ Хелла, Мернера и Бетцига оптическая микроскопия преодолела дифракционный предел Аббе и превратилась в «наноскопию».