Гюйгенс Волновая теория света. В погоне за лучом | страница 73



m · d²s/dt² = -m · g · sinα,

где s представляет собой расстояние, пройденное вдоль окружности (S = L · α).

d²s/dt² = g · sinα, d²s/dt² = -g · sin s/L.

Решением этого уравнения будет функция s(t), которая позволяет получить для каждого момента t положение массы s, то есть определяет ее траекторию. Обычно это непериодическая функция. Когда значение а очень мало (то есть когда L гораздо больше s), синус и угол становятся почти одинаковыми (α ≈ sin а), и уравнение упрощается:

d²s/dt² = -g · s/L.

Решение этого уравнения соответствует периодической функции:

s(t) = smax · sin(√(g/L) · t).

Чем больше угол а, тем больше отдалится значение его синуса и хуже будет периодическая апроксимация. Это расхождение называется круговым отклонением. На рисунке 2 черная кривая обозначает функцию sin α, а серая — функцию α. Видно, что они совпадают только при маленьких углах, а от 15° градусов начинается расхождение.

РИС. 1

РИС. 2


когда чистит огромную кастрюлю, в которой очищался жир кита. Он понимает, что с какой бы высоты ни падало мыло, у него всегда уходит одинаковое количество времени, чтобы дойти до дна. Какой математической модели следовал изгиб дна кастрюль «Пеко»? За двести лет до появления Измаила, в декабре 1659 года, Гюйгенс открыл, что речь шла о перевернутой циклоиде.

Циклоида была одной из наиболее хорошо изученных кривых для математиков того времени. Из-за споров вокруг нее циклоиду даже называли Еленой геометров и яблоком раздора. Говорят, что Паскаль начал заниматься этой кривой, чтобы отвлечься от зубной боли. Способ сработал, и ученый счел его знаком свыше, говорящим, что ему следует глубже изучить свойства циклоиды. И здесь на сцене опять появляется Галилей, поскольку именно он дал кривой это название, восхищенный ее «изящнейшим изгибом, так хорошо подходящим для арок мостов».

Самый простой способ нарисовать циклоиду состоит в том, чтобы отметить на окружности точку и сделать так, чтобы окружность катилась без скольжения. Траектория, по которой будет двигаться точка, и будет циклоидой (см. рисунок 4). Эта кривая имеет особые отношения с силой тяжести. В 1696 году Якоб Бернулли бросил научному сообществу вызов: если соединить две точки А и В линией и запустить по ней шар, то какую форму должна принять линия, чтобы шар затратил как можно меньше времени на то, чтобы пройти от А к В? Ответом опять была перевернутая циклоида.

РИС. 4

РИС. 5


РИС. 6

РИС. 7

РИС. 8


Гюйгенса больше всего интересовало такое свойство кривой, как ее изохронность: вне зависимости от того, с какой высоты падает тело, если оно падает по циклоиде, то всегда затратит одинаковое количество времени, чтобы дойти до нижней точки. Падение составляет половину движения маятника, потому что после того как тело достигает нижней точки, полученный импульс заставляет его вернуться наверх. Если ограничение его восхождения симметрично тому, что влияет на его падение (не учитывая трение), то тело поднимется на ту же высоту, с которой упало, и опять спустится. Таким образом, одинаковые временные промежутки падения для всех высот становятся одинаковыми промежутками восхождения. Период — это сумма двух симметричных восхождений и падений. Если время не зависит от высоты, то период не будет зависеть от ширины колебаний. Гюйгенс нашел теоретическое решение своей задачи — идеальный маятник, колебания которого происходят по циклоиде. Теперь ему надо было дополнить это решение элементами, которыми он уже располагал. Ученый перевел задачу из физической плоскости в геометрическую. Он должен был найти способ нарисовать дугу циклоиды при помощи циркуля, поскольку маятник описывает именно часть окружности. Для этого Гюйгенс начал играть с длиной веревки. Достаточно было поставить на ее пути гвоздь, чтобы, начиная с этой точки, происходило маятникообразное движение меньшей длины. Несколько гвоздей, расставленные друг за другом на разной высоте, заставили бы гирю описывать окружность все меньшего радиуса, который укорачивается следующим гвоздем и так далее (см. рисунок 5).