Гюйгенс Волновая теория света. В погоне за лучом | страница 72



Другими словами, чем больше угол а, тем больше времени гиря затрачивает на завершение колебания. Хотя на практике при небольших углах эта зависимость исчезает, для нормального функционирования механизм требовал широких колебаний. Гюйгенс принял вызов и решил сконструировать маятник, период которого не зависел бы от размаха колебаний.

В маятнике соотношение между вертикальным направлением действия силы притяжения, которая влечет гирю вниз, и сопротивлением веревки, которая не дает гире отдалиться дальше, чем на свою длину, заставляют его описывать дугу окружности. Таким образом, у нас есть два элемента: сила тяжести и ограничение, которое мы накладываем на естественную траекторию массы. Из этих двух элементов легче манипулировать со вторым. Пока мы можем забыть о веревке в надежде, что найдется другой способ, ограничивающий движение гири и заставляющий ее колебаться по траектории, которая не будет круговой. Например, гирю можно закрепить в хорошо смазанном тросе или катать по изогнутой поверхности. То есть, рассматривая эту ситуацию без каких-либо ограничений, можем ли мы придать гире циклическую траекторию, которую она будет проходить под действием силы тяжести и независимо от широты?

С точки зрения физики вопрос можно поставить по- другому: существует ли траектория, проходя по которой, тело затрачивает столько же времени, чтобы достигнуть самой низкой точки, как при падении, вне зависимости от того, откуда оно начало падать? Интуиция подсказывает нам, что нет. Главный герой «Моби Дика» Измаил находит ответ случайно,


КРУГОВОЕ ОТКЛОНЕНИЕ

На рисунке 1 показан простой маятник и главные элементы, отвечающие за его движение: вес Р, возникающий в связи с силой притяжения, и натяжение веревки Т. В классическом ньютоновом анализе вес раскладывается на сумму двух сил, одна действует перпендикулярно траектории (Рp = Р · cosα), другая — по окружности (P>t = Р · sinα). Это разделение ведет к двум уравнениям. В одном из них Р равно натяжению (Р= T) на двух концах колебания. Если Р было больше T, веревка порвалась бы. Если бы оно было меньше, веревка растягивалась бы массой m. Поскольку L остается постоянной, первое уравнение ограничивает движение гири дугой окружности. Второе уравнение описывает его динамику, как оно ускоряется и тормозится, когда колебания идут по кругу: m · at = P>t = -Р · sinα (где at — круговое ускорение). Отрицательный знак появляется, так как когда а положителен (sinα тоже положителен при α < 180°), то сила направлена влево, по направлению, которое мы считаем отрицательным, и наоборот. Если мы немного разовьем выражение, то получим: