Вначале была аксиома. Гильберт. Основания математики | страница 12
В то время как общие понятия имеют чисто логическое происхождение, постулаты (или аксиомы) обладают геометрической природой. Они уточняют правила работы с математическими объектами, которые Евклид определил до этого. Эти пять постулатов, или аксиом, следующие.
1. От всякой точки до всякой точки можно провести прямую.
2. Ограниченную прямую можно непрерывно продолжать по прямой.
3. Из всякого центра всяким раствором может быть описан круг.
4. Все прямые углы равны между собой.
Иллюстрация пятого постулата Евклида.
5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых (см. рисунок на предыдущей странице).
В отличие от прочих, пятый постулат Евклида довольно неочевиден, и это привело к тому, что многие математики — например, Птолемей (II век), Джон Валлис (1616-1703) и Иероним Саккери (1667-1733) — безуспешно пытались доказать его через остальные постулаты. В попытках доказательства каждый из них превосходил другого по утонченности и находчивости. Но единственным, чего они добились, стали формулировки, равносильные пятому постулату. Одна из них — знаменитая аксиома параллельных прямых. «Через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной» (см. рисунок выше). Другая версия провозглашает, что «Сумма углов треугольника равна 180°». Однако историю о пятом постулате, или аксиоме параллельных прямых, ждал удивительный финал.
Иллюстрация аксиомы параллельных прямых.
Как математикам удалось освободиться от цепей евклидовой геометрии? Более 2000 лет они были убеждены, что это единственно возможная геометрия, единственное убедительное описание мира, поскольку изучалось только одно физическое пространство. Но в XIX веке открытие различных геометрий (в которых не выполнялась аксиома параллельных прямых) усилило их тревогу и заставило признать ошибку. Этот животрепещущий вопрос касался формы мира (если он действительно имеет какую-то форму).
Первой неевклидовой геометрией, с которой смирились математики, оказалась, как ни странно, старая знакомая — проективная геометрия. Она начала свой путь в эпоху Возрождения, когда художники заинтересовались проецированием пространства на холст. Тогда было открыто одно из отличительных свойств проективной геометрии (которое радикально отличает ее от неевклидовой): две прямые, которые в трехмерном пространстве представлены как параллельные, на двумерном холсте предстают как пара прямых, пересекающихся на линии горизонта, в бесконечности. Точно так же железнодорожные рельсы, параллельные по всей длине, на фотографиях кажутся пересекающимися в точке схода. Так что в проективной геометрии две любые точки всегда пересекаются: либо в конкретной точке, либо в бесконечности. Следовательно, проективная геометрия противоречит аксиоме параллельных прямых, поскольку через точку, не лежащую на данной прямой, не проходит ни одной прямой, параллельной первой.