Вначале была аксиома. Гильберт. Основания математики | страница 13
В начале XIX века в проективной геометрии наметился прорыв, и совершил его французский математик Виктор Понселе (1788-1867). Этот наполеоновский офицер, оказавшись в российском плену, посвятил себя усовершенствованию идей в данной области и по возвращении домой опубликовал «Трактат о проективных свойствах фигур» (1822). В нем Понселе ввел понятие проективной геометрии как сферы знания, рассматривающей свойства фигур, которые сохраняются при проецировании, то есть свойств, общих для фигур с их тенями и проекциями. Эти свойства включают в себя отношения принадлежности, но не отношения расстояния или размера. Так, если три точки лежат на одной прямой, при проецировании они на одной прямой и остаются, но очень вероятно, что расстояние между ними изменится. Точно так же тень, которую отбрасывает каждый из нас, не равна нам по размеру. Через некоторое время немецкий математик Юлиус Плюккер (1801-1868) включил в проективную геометрию координаты, что позволило ему алгебраизировать ее и доказать многочисленные результаты с аналитической точки зрения.
В результате проективная геометрия составляла особый случай неевклидовой геометрии. Аксиома параллельных прямых не выполнялась (поскольку на проективной плоскости не существовало параллельных прямых), но проективная геометрия отрицала не только аксиому параллельных прямых, но и параметры углов и расстояние (поскольку при проецировании они не сохраняются). Не выполнялся не только пятый, но и четвертый постулаты Евклида (об углах). Поэтому математики не стали рассматривать проективную геометрию как настоящую неевклидову геометрию.
Казавшаяся недостижимой цель заключалась в том, чтобы с нуля построить новую геометрию, которая выполняла бы евклидовы аксиомы, кроме аксиомы параллельных прямых. Поскольку она отрицалась, оставалось два пути: либо отрицать существование параллельных прямых («не существует параллельных прямых»), либо отрицать единственность прямой, параллельной данной, проходящей через точку, не лежащую на ней («существует более одной параллельной прямой»).
Феликс Клейн (1849-1925), учитель Гильберта, проповедовал четкое видение геометрии. Любая геометрия состоит из пространства и группы трансформаций. Для Клейна геометрия заключалась в изучении свойств объектов, которые остаются инвариантными к некоторой группе трансформаций, или предварительно заданных движений. Уверовав в роль проективной геометрии, он доказал, что раз она задана группой проекций — наибольшей группой, — то представляет собой основную геометрию, базирующуюся на минимальном числе начальных гипотез. Все прочие геометрии проистекают из нее, порождая дополнительные гипотезы. Именно так произошло с евклидовой геометрией, которая наследовала все проективные свойства.