Вначале была аксиома. Гильберт. Основания математики | страница 11



Пифагору также удалось установить логическую связь с наследием вавилонян и египтян. Под руководством Платона Афинская академия систематизировала пифагорейскую математику, особенно заметен вклад Теэтета (ок. 417 — ок. 369 до н.э.) и Евдокса (ок. 390 — ок. 337 до н.э.). Первому приписывают теорему, гласящую, что существует только пять правильных многогранников, пять Платоновых тел. Тогда же геометров того времени завораживали три классические проблемы: трисекция угла, квадратура круга и удвоение куба. Перейдя из Афинской академии в Александрийский мусейон, мы встретились бы с Евклидом, работа которого (наряду с работой Аполлония и Архимеда) завершает золотую эпоху греческой геометрии.

Идеализированный портрет Евклида. Юстус ван Гент, 1474 год.


«Отчет о числах» перенес Гильберта в авангард европейской математики. Конечно, анализируя его раннюю математическую деятельность, можно подумать, будто это отличный исследователь, но в узкой сфере знаний. Почти невозможно было предвидеть дальнейшее восхождение Гильберта на вершину математического Олимпа и общую убежденность в том, что, как и Пуанкаре, он является одним из последних математиков-универсалов, ориентирующихся во всех областях науки, включая его следующее завоевание — геометрию. Но чтобы показать вклад Гильберта в этой области, нужно вспомнить об исторической подоплеке, о том толчке, который XIX век обеспечил геометрии, о том, как открытие неевклидовых геометрий изменило аксиоматический метод.


НЕЕВКЛИДОВЫ ГЕОМЕТРИИ

Греческая геометрия была краеугольным камнем математики в течение нескольких веков. В «Началах» — трактате, восходящем к 300 году до н.э., — Евклид предложил аксиоматическое, чрезвычайно упорядоченное и структурированное представление о корпусе знаний, переданных математиками школ Пифагора и Платона. Его изложение, на которое повлияли размышления Аристотеля о логике, обладало очень примечательной характеристикой — чрезвычайной строгостью при доказательстве каждой теоремы.

«Начала» состоят из 13 книг и содержат 465 геометрических пропозиций, от базовых принципов до самых проработанных выводов. Евклид начинает Книгу I списком из 23 определений основных геометрических терминов (точка, прямая, треугольник, окружность и так далее). Например: «Точка есть то, что не имеет частей». Затем Евклид приводит пять постулатов, на которых базируется вся его геометрия. Эти постулаты представлены без доказательства и обоснования, их просто нужно принять как предпосылки к изложенному дальше. Например: «Между двумя любыми точками можно провести прямую линию». После определений и геометрических постулатов Евклид уточняет ряд общих понятий и неоспоримых истин. Например: «Целое больше части» или «Равные одному и тому же равны и между собой». С этого момента Евклид начинает углубляться в предмет. Так, в первой пропозиции «Начал» показано, как построить равносторонний треугольник на заданном линейном отрезке.