5a. Электричество и магнетизм | страница 26



а систему двух проводников — конденсатором. Для нашего конденсатора из параллельных пластин


(параллельные обкладки). (6.34)

Эта формула неточна, потому что поле в противоречии с на­шим предположением на самом деле не всюду однородно. Поле не кончается сразу на ребрах пластин, а похоже скорее на то, что изображено на фиг. 6.13. Суммарный заряд тоже равен не sА, как мы предположили; существует маленькая поправ­ка на краевой эффект. Чтобы знать, какова она, надо точнее рас­считать поле и посмотреть, что происходит на краях. Это очень сложная математическая задача, однако ее можно решить при помощи техники, о которой мы, впрочем, говорить здесь не бу­дем. Расчеты показывают, что плотность зарядов возле края пластин слегка возрастает. Это значит, что емкость пластин чуть выше, чем мы думали. [Хорошее приближение для емкости можно получить, если в уравнении (6.34) принять за А площадь, которую имели бы пластины, если б их расширили на >3/>8 расстояния между ними.]

Мы говорили пока только о емкости двух проводников. Иногда люди говорят о емкости предмета самого по себе. Так, говорят, что емкость сферы радиусом а есть 4pe>0а. При этом подразумевается, что вторым полюсом является сфера беско­нечного радиуса, т. е. что если на сфере помещен заряд

+ Q, то противоположным зарядом -Q обладает бесконечно боль­шая сфера. Можно говорить также о емкостях и тогда, когда проводников три или больше трех, но обсуждение этого во­проса мы отложим до лучших времен.

Пусть нам необходимо иметь конденсатор очень большой емкости. Большую емкость можно получить, взяв очень большую

площадь и очень малый промежуток. Можно про­ложить алюминиевые лен­ты провощенной бумагой и смотать их в трубку. (Поместив ее в пластмас­совую упаковку, мы полу­чим типичный радиоконденсатор.)



Фиг. 6.13. Электрическое поле у краев двух параллельных пластин.

Зачем они нужны? Они пригодны для того, чтобы накапливать заряд. Если бы мы захотели, например, собрать заряд на каком-то шаре, то его потенциал быстро подско­чил бы, а вскоре так поднялся бы, что заряды стали бы стекать в воздух, и от шара посыпались бы искры. Но если тот же заряд поместить внутрь конденсатора большой емкости, то напряжение близ конденсатора будет очень малым.

Во многих электронных схемах полезно иметь устройство, способное поглощать или выделять большие количества зарядов, заметно не изменяя потенциал. Вот конденсатор (или «емкость»)— как раз такое устройство. Он имеет множество применений и в электронных приборах и в счетных машинах. Там он исполь­зуется для получения определенного изменения в напряжении в ответ на то или иное изменение заряда. С подобным приме­нением мы уже познакомились в вып. 2, гл. 23, когда описыва­ли свойства резонансных контуров.