5a. Электричество и магнетизм | страница 27




Из определения С мы получаем, что единица емкости есть кулон/вольт. Эту единицу называют также фарадой (ф). А вгля­девшись в уравнение (6.34), мы видим, что e>0 можно выразить в фарадах/метр (ф/м); эта единица обычно и применяется.


Типичные емкости конденсаторов лежат в интервале от 1 мик­ромикрофарады (мкмкф) [или, что тоже самое, 1 пикофарады (1 пф)] до миллифарад. Небольшие конденсаторы на несколько пикофарад используются в высокочастотных контурах наст­ройки, а емкости порядка сотен или тысяч микрофарад мы на­ходим в силовых фильтрах. Пара обкладок с площадью 1 см>2 с промежутком 1 мм имеет емкость примерно 1 пф.

§ 11. Пробой при высоком напряжении

Сейчас мы качественным образом рассмотрим некоторые ха­рактеристики полей вокруг проводников. Зарядим электри­чеством проводник, но на сей раз не сферический, а такой, у ко­торого есть острие или ребро (например, в форме, изображен­ной на фиг. 6.14). Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по по­верхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пла­стине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность

означает сильное поле близ проводника в этом месте.


Фиг. 6.14. Электрическое по­ле у острого края проводника очень велико.


Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рас­смотрим комбинацию из большой и маленькой сфер, соединен­ных проводом, как показано на фиг. 6.15. Сам провод не будет сильно влиять на внешние поля; его дело — уравнять потен­циалы сфер. Возле какого шара поле окажется более напряжен­ным? Если радиус левого шара а, а заряд Q, то его потенциал примерно равен

(Конечно, наличие одного шара скажется на распределении за­рядов на другом, так что на самом деле ни на одном из них заря­ды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться форму­лой для потенциала сферического заряда.) Если меньший шар радиусом b обладает зарядом q, то его потенциал примерно ра­вен


Но j>1=j>2, так что


С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, делен­ному на квадрат радиуса. Получается, что