6. Электродинамика | страница 46
Значит, мы должны поискать другой способ вычисления коэффициента самоиндукции одной катушки. При этом надо учесть распределение токов внутри проводника, потому что его размеры — важный параметр. Но мы не будем считать полную индуктивность, а сосчитаем лишь ту ее часть, которая связана с расположением проводников, и не будем учитывать часть, связанную с распределением токов. Пожалуй, самый простой способ найти такую индуктивность — это использовать магнитную энергию. Ранее, в гл. 15, § 3, мы нашли выражение для магнитной энергии распределения стационарных токов:
(17.44)
Если известно распределение плотности тока j, то можно вычислить векторный потенциал А, а затем, оценив интеграл (17.44), получить энергию. Эта энергия равна магнитной энергии самоиндукции, >l/>2ж>I>2. Приравнивая их, получаем формулу для индуктивности:
(17.45)
Мы, конечно, ожидаем, что индуктивность есть число, зависящее только от геометрии цепи, а не от тока / в цепи. Формула (17.45) действительно приводит к такому результату, потому что интеграл в ней пропорционален квадрату тока — ток входит один раз от j и еще раз от векторного потенциала А. Интеграл, деленный на I>2, зависит от геометрии цепи, но не от тока I.
Выражению (17.44) для энергии распределения токов можно придать совсем другую форму, иногда более удобную для вычислений. Кроме того, как мы увидим позже, именно эта форма важна, потому что она справедлива в более общем случае. В формуле (17.44) и А и j можно связать с В, поэтому можно надеяться, что энергия выразится через магнитное поле — точно так же, как нам удалось связать электростатическую энергию с электрическим полем. Начнем с подстановки e>0c>2СXВ вместо j. Заменить А мы не можем с той же легкостью, потому что нельзя обратить B=СXA, чтобы выразить А через В. Можно только
записать
(17.46)
Любопытно, что при некоторых ограничениях этот интеграл можно превратить в
(17.47)
Чтобы увидеть это, выпишем подробно типичный множитель. Предположим, что мы взяли множитель (СXB)>zA>z, входящий в интеграл (17.46). Выписывая полностью компоненты, получаем
(имеются, конечно, еще два интеграла того же сорта). Проинтегрируем теперь первый множитель по х, интегрируя по частям,
Теперь предположим, что наша система (имея в виду источники и поля) — конечная, так что, когда мы уходим на большие расстояния, все поля стремятся к нулю. Тогда при интегрировании по всему пространству подстановка B>yA>zна пределах интеграла дает нуль. У нас остается только