6. Электродинамика | страница 46




Значит, мы должны поискать другой способ вычисления коэффициента самоиндукции одной катушки. При этом надо учесть распределение токов внутри проводника, потому что его размеры — важный параметр. Но мы не будем считать полную индуктивность, а сосчитаем лишь ту ее часть, которая связана с расположением проводников, и не будем учитывать часть, связанную с распределением токов. Пожалуй, самый простой способ найти такую индуктивность — это использовать магнит­ную энергию. Ранее, в гл. 15, § 3, мы нашли выражение для магнитной энергии распределения стационарных токов:

(17.44)

Если известно распределение плотности тока j, то можно вы­числить векторный потенциал А, а затем, оценив интеграл (17.44), получить энергию. Эта энергия равна магнитной энер­гии самоиндукции, >l/>2ж>I>2. Приравнивая их, получаем формулу для индуктивности:

(17.45)

Мы, конечно, ожидаем, что индуктивность есть число, зависящее только от геометрии цепи, а не от тока / в цепи. Формула (17.45) действительно приводит к такому результату, потому что ин­теграл в ней пропорционален квадрату тока — ток входит один раз от j и еще раз от векторного потенциала А. Интеграл, деленный на I>2, зависит от геометрии цепи, но не от тока I.

Выражению (17.44) для энергии распределения токов можно придать совсем другую форму, иногда более удобную для вы­числений. Кроме того, как мы увидим позже, именно эта форма важна, потому что она справедлива в более общем случае. В формуле (17.44) и А и j можно связать с В, поэтому можно надеяться, что энергия выразится через магнитное поле — точно так же, как нам удалось связать электростатическую энергию с электрическим полем. Начнем с подстановки e>0c>2СXВ вместо j. Заменить А мы не можем с той же легкостью, потому что нельзя обратить B=СXA, чтобы выразить А через В. Можно только

записать

(17.46)

Любопытно, что при некоторых ограничениях этот интеграл можно превратить в


(17.47)

Чтобы увидеть это, выпишем подробно типичный множитель. Предположим, что мы взяли множитель (СXB)>zA>z, входящий в интеграл (17.46). Выписывая полностью компоненты, полу­чаем

(имеются, конечно, еще два интеграла того же сорта). Проинте­грируем теперь первый множитель по х, интегрируя по частям,


Теперь предположим, что наша система (имея в виду источники и поля) — конечная, так что, когда мы уходим на большие рас­стояния, все поля стремятся к нулю. Тогда при интегрировании по всему пространству подстановка B>yA>zна пределах интеграла дает нуль. У нас остается только