6. Электродинамика | страница 45
(17.39)
Тогда сила между катушками дается выражением
Воспользуемся выражением (17.38) для энергии системы из двух катушек, чтобы показать, какое интересное неравенство существует между взаимной индукцией m и коэффициентами самоиндукции ж> 1 и ж> 2двух катушек. Ясно, что энергия двух катушек должна быть положительной. Если мы начинаем с нулевых токов в обеих катушках и увеличиваем эти токи до некоторых значений, то тем самым мы увеличиваем энергию всей системы. В противном случае токи самопроизвольно возрастут и будут отдавать энергию остальному миру — вещь невероятная! Далее, наше выражение для энергии (17.38) можно с
таким же успехом записать в следующей форме:
(17.40)
Это просто алгебраическое преобразование. Эта величина должна быть всегда положительна при любых значениях I>1 и I>2. В частности, она должна быть положительна, когда I>2 вдруг примет особое значение:
(17.41)
Но при таком значении I>2 первое слагаемое в (17.40) равно нулю. Если энергия положительна, то последнее слагаемое в (17.40) должно быть больше нуля. Мы получаем требование, что
Таким образом, мы доказали общее соотношение, что величина взаимной индукции m любых двух катушек обязательно меньше или равна геометрическому среднему двух коэффициентов самоиндукции (сам m может быть положителен или отрицателен в зависимости от выбора знаков для токов I>t и I>2):
(17.42)
Соотношение между m и коэффициентами самоиндукции обычно записывают в виде
(17.43)
Постоянную k называют коэффициентом связи. Если большая часть потока от одной катушки проходит через другую катушку, то коэффициент связи близок к единице; мы говорим, что катушки «сильно связаны». Если катушки значительно удалены друг от друга или же все устроено так, что взаимное проникновение их потоков очень мало, коэффициент связи становится близок к нулю, а коэффициент взаимной индукции очень мал.
Для вычисления взаимной индукции двух катушек мы дали формулу (17.30), которая представляет собой двойной контурный интеграл по обеим цепям. Мы могли бы подумать, что та же формула применима и для вывода коэффициента самоиндукции одной катушки, если оба контурных интегрирования проводить по одной и той же катушке. Однако это не так, потому что при интегрировании по двум катушкам знаменатель r>12 под знаком интеграла стремится к нулю, когда два элемента длины находятся в одной точке. Коэффициент самоиндукции, получаемый из этой формулы, оказывается бесконечным. Происходит это потому, что формула наша — приближенная, и справедлива она только для поперечных сечений проводов в обеих цепях, малых по сравнению с расстоянием от одной цепи до другой. Ясно, что это приближение для отдельной катушки не годится. На самом деле оказывается, что индуктивность отдельной катушки стремится логарифмически к бесконечности, когда диаметр ее проволоки становится все меньше и меньше.