6. Электродинамика | страница 47
А теперь мы можем заменить (СXA) на В и получить
(17.48)
Мы выразили энергию в магнитостатическом случае только через магнитное поле. Выражение тесно связано с формулой, которую мы нашли для электростатической энергии:
(17.49)
Эти две энергетические формулы выделены потому, что иногда ими удобнее пользоваться. Обычно есть и более важная причина: оказывается, что для динамических полей (когда Е и В меняются со временем) оба выражения (17.48) и (17.49) остаются справедливыми, тогда как другие данные нами формулы для электрической и магнитной энергий перестают быть верными — они годятся лишь для статических полей.
Если нам известно магнитное поле В одной катушки, мы можем найти коэффициент самоиндукции, приравнивая выражение для энергии (17.48) и >1/>2жI>2. Посмотрим, что получится в результате для индуктивности длинного соленоида. Раньше мы видели, что магнитное поле в соленоиде однородно и В снаружи равно нулю. Величина поля внутри равна В=nI/e>0с>2, где n — число витков на единицу длины намотки, а I — ток. Если радиус катушки r, а длина ее L (мы считаем, что L очень велика, чтобы можно было пренебречь краевыми эффектами, т. е. L >>r), то внутренний объем равен pr>2L. Следовательно, магнитная энергия равна
что равно >1/>2^I>2. Или
(17.50)
* Кстати, это не единственный способ установления соответствия между механическими и электрическими величинами.
* Мы пренебрегаем всеми тепловыми потерями энергии в сопротивлении катушки. Эти потери требуют дополнительных затрат энергии источника, но не меняют энергии, которая тратится на индуктивность.
Глава 18
УРАВНЕНИЯ МАКСВЕЛЛА
§ 1. Уравнения Максвелла
§ 2. Что дает добавка
§ 3. Все о классической физике
§ 4. Передвигающееся поле
§ 5. Скорость света
§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение
§ 1. Уравнения Максвелла
В этой главе мы вернемся к полной системе из четырех уравнений Максвелла, которые мы приняли как отправной пункт в гл. 1 (вып. 5). , До сих пор мы изучали уравнения Максвелла небольшими частями, кусочками; теперь пора уже прибавить последнюю часть и соединить их все воедино. Тогда мы будем иметь полное и точное описание электромагнитных полей, которые могут изменяться со временем произвольным образом. Все сказанное в этой главе, если даже оно и будет противоречить чему-то сказанному ранее, правильно, а то, что говорилось ранее в этих случаях, неверно, потому что все высказанное ранее применялось к таким частным случаям, как, скажем, случаи постоянного тока или фиксированных зарядов. Хотя всякий раз, когда мы записывали уравнение, мы весьма старательно указывали ограничения, легко позабыть все эти оговорки и слишком хорошо заучить ошибочные уравнения. Теперь мы можем изложить всю истину, без всяких ограничений (или почти без них).