8a. Квантовая механика I | страница 33
Н>12=m(В>x+iB>y).
На самом деле таких возможностей не одна, в общем случае можно написать
где d — произвольная фаза.
Какой же знак и какую фазу мы обязаны взять? Оказывается, что можно выбрать любой знак и фазу тоже любую, а физические результаты от этого не изменятся. Так что выбор — это вопрос соглашения. Еще до нас кто-то решил ставить знак минус и брать е>i>d=-1. Мы можем делать так же и написать
(Кстати, эти соглашения связаны и согласуются с тем произволом в выборе фаз, который мы использовали в гл. 4.) Полный гамильтониан для электрона в произвольном магнитном поле, следовательно, равен
уравнения для амплитуд С>1 и С>2 таковы:
Итак, мы открыли «уравнения движения спиновых состояний» электрона в магнитном поле. Мы угадали их, пользуясь некоторыми физическими аргументами, но истинная проверка всякого гамильтониана заключается в том, что он обязан давать предсказания, согласующиеся с экспериментом. Из всех сделанных проверок следует, что эти уравнения правильны. Более того, хотя все наши рассуждения относились к постоянному полю, написанный нами гамильтониан правилен и тогда, когда магнитные поля меняются со временем. Значит, мы теперь можем применять уравнения (8.23) для решения всевозможных интересных задач.
§ 7. Вращающийся электрон в магнитном поле
Пример первый: пусть сначала имеется постоянное поле в направлении z. Ему соответствуют два стационарных состояния с энергиями ±mB>z. Добавим небольшое поле в направлении х. Тогда уравнения получатся такими же, как в нашей старой задаче о двух состояниях. Опять, в который раз, получается знакомый уже нам переброс, и уровни энергии немного расщепляются. Пусть, далее, x-компонента поля начнет меняться во времени, скажем, как coswt. Тогда уравнения станут такими, как для молекулы аммиака в колеблющемся электрическом поле (см. гл. 7). И тем же способом, что и прежде, вы можете рассчитать процесс во всех деталях. При этом вы увидите, что колеблющееся поле приводит к переходам от +z-состояния к —z-состоянию и обратно, если только горизонтальное поле колеблется с частотой, близкой к резонансной, w>0=2mB>z/h. Это приводит к квантовомеханической теории явлений магнитного резонанса, описанной нами в гл. 35 (вып. 7).
Можно еще сделать мазер, в котором используется система со спином >1/>2. Прибор Штерна — Герлаха создает пучок частиц, поляризованных, скажем, в направлении +z, и они потом направляются в полость, находящуюся в постоянном магнитном поле. Колеблющиеся в полости поля, взаимодействуя с магнитным моментом, вызовут переходы, которые будут снабжать полость энергией.