Том 12. Числа - основа гармонии. Музыка и математика | страница 33
Многие композиторы при создании своих произведений умышленно использовали принципы и приемы геометрии. В некоторых случаях они наглядно проявляются при взгляде на партитуру, в других — находят непосредственное воплощение в звуках. Некоторые композиции имеют структуру, обладающую интересными геометрическими свойствами. Таковы, например, каноны. Сама их форма серьезно влияет на мелодию, из-за чего создание таких произведений становится вдвойне сложнее. Композитор не просто должен создать красивую мелодию — последовательность звуков должна подчиняться строгим математическим правилам. В некоторых композициях в качестве художественных приемов специально используются геометрические преобразования.
В этом разделе мы сравним различные геометрические преобразования и определенные сочетания звуков. Важно не забывать о фундаментальном различии: два измерения на плоскости имеют одинаковую размерность, два измерения нотного стана (высота звуков и время) — нет. Из-за этого музыкальные преобразования совершаются в разных измерениях по отдельности.
Также можно применять преобразования к нотам как к геометрическим фигурам на плоскости, но результаты этих преобразований не всегда будут различимы для слушателя.
Важно помнить, что преобразования применяются к кривой, соединяющей головки нот. Рассмотрим пример мелодии из четырех нот. Соединив ноты линиями, получим следующее изображение:
Применим к этой ломаной линии геометрическое преобразование:
и восстановим головки и штили всех нот:
Геометрическо-музыкальные преобразования — еще одно средство, которое может использовать композитор, но применять его следует аккуратно и разумно.
Изометрические преобразования
«Изометрический» означает «сохраняющий расстояние». Существует три различных изометрических преобразования на плоскости: перенос, отражение и поворот. Они находят соответствие в различных символах нотной записи. Если рассматривать преобразования высоты звуков и их длительности отдельно, то число возможных их видов возрастет. В следующей таблице вкратце перечислены все возможные преобразования такого типа:
При комбинировании некоторых из этих преобразований число возможных вариантов возрастает еще больше:
Переносы
Перенос — это геометрическое преобразование, при котором все точки фигуры перемещаются в заданном направлении на одно и то же расстояние, при этом форма фигуры не изменяется. В нашем случае достаточно рассмотреть горизонтальный и вертикальный перенос. Они показаны на рисунке справа.