Том 18. Открытие без границ. Бесконечность в математике | страница 60
* * *
ПРОВИДЕЦ ИЗ IX ВЕКА
Сабит ибн Курра (ок. 836–901) был авторитетным арабским ученым, жившим в IX веке. Известно, что он родился в Харране, в Междуречье. Помимо большого числа текстов по богословию и философии, он создал любопытный математический трактат, посвященный, главным образом, арифметике. В нем ибн Курра, продемонстрировав невиданную для своего времени смелость, рассматривает возможность существования различных видов бесконечности в том смысле, что некоторые ее виды могут быть больше других. Таким образом, ибн Курру можно считать подлинным предшественником Кантора.
* * *
Кантор знал, что
Даны два отрезка, а и b. Чтобы установить взаимно однозначное соответствие между их точками, достаточно выполнить следующее построение. Соединим концы отрезков прямыми с и d, которые пересекутся в точке Е.
Выберем произвольную точку F отрезка а и соединим отрезком эту точку с точкой Е — точкой пересечения прямых с и d. Точка G, в которой эта прямая пересечет отрезок Ь, и будет искомым отображением точки F. Очевидно, что таким образом можно сопоставить каждой точке отрезка а точку отрезка b и наоборот. Это доказывает, что число точек на обоих отрезках одинаково.
Затем Кантор выполнил смертельный номер: взяв за основу один из этих отрезков, он построил квадрат
и смог доказать, что кардинальное число множества всех точек квадрата равно
И вновь доказал, что число точек, содержащихся в кубе, также равно
«Я вижу это, но я в это не верю», — писал Кантор Дедекинду в 1877 году, пытаясь объяснить эти взаимно однозначные соответствия между фигурами, имеющими разное число измерений. Кантор доказал положение, противоречащее любым интуитивным и математическим представлениям о размерности: все одномерные, двумерные и трехмерные объекты, с которыми он работал, содержали одно и то же число точек, равное
Это было невероятно, и этот результат означал, что на любом, сколь угодно малом, отрезке содержится столько же точек, сколько во всей известной Вселенной. Внутри бесконечно малого оказалось заключено нечто бесконечно большое.