Том 3. Простые числа. Долгая дорога к бесконечности - Энрике Грасиан

Бесплатно читаем книгу Том 3. Простые числа. Долгая дорога к бесконечности - Энрике Грасиан без сокращений! Чтобы читать полную версию, не нужна регистрация на сайте. Помните, что чтение доступно как на компьютере, так и на Андроиде, Айфоне и любом другом телефоне.
Том 3. Простые числа. Долгая  дорога к бесконечности - Энрике Грасиан

Энрике Грасиан - Том 3. Простые числа. Долгая дорога к бесконечности о чем книга


Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.

Читать онлайн бесплатно Том 3. Простые числа. Долгая дорога к бесконечности, автор Энрике Грасиан


Предисловие

С точки зрения арифметики большинство чисел отличается, так сказать, «хорошим поведением». Четные числа всегда чередуются с нечетными, каждое третье число всегда кратно трем, квадраты чисел подчиняются определенному закону. Поэтому мы можем составить длинный ряд чисел, которые ведут себя так, как им положено, независимо от длины этого ряда и величины самих чисел. Но простые числа похожи на неуправляемую толпу. Они появляются там, где им захочется, без предварительного предупреждения, на первый взгляд, совершенно хаотично, без какой-либо закономерности. А самое главное — их нельзя проигнорировать: простые числа необходимы для арифметики и для математики в целом.

Простые числа — не такая уж сложная тема, на изучение которой потребовалось бы много лет; фактически ее проходят еще в школе. Чтобы понять, что такое простое число, нужно лишь уметь считать и владеть четырьмя основными арифметическими действиями. Тем не менее, простые числа были и продолжают оставаться одной из самых удивительных проблем в истории науки. Тот, кто хочет заниматься математикой, но не владеет теорией простых чисел, ничего не сможет добиться, так как они присутствуют везде — иногда затаившись, как в засаде, готовые появиться когда их меньше всего ожидаешь. С неизбежностью появления простых чисел невозможно не считаться.

Простые числа важны не только в математике. Многие даже не догадываются о том, что они играют важную роль в нашей повседневной жизни, например, в банковских операциях или в обеспечении защиты персональных компьютеров и конфиденциальности разговоров по мобильному телефону. Они являются краеугольным камнем компьютерной безопасности.

В метафорическом смысле простые числа — как вредоносный вирус: если он захватывает ум математика, его очень трудно искоренить. Евклид, Ферма, Эйлер, Гаусс, Риман, Рамануджан и многие другие известные математики стали его жертвой.

Хотя некоторым и удалось более-менее излечиться, все они страдали навязчивой идеей найти «волшебную формулу», которая определяет, какое простое число будет следовать за определенным натуральным числом. Однако никому еще не удалось открыть это правило.

Простые числа на протяжении всей истории математики порождали множество гипотез. В каком-то смысле можно сказать, что история простых чисел является историей неудач, но прекрасных неудач, которые со временем привели к возникновению новых теорий, свежих воззрений и передовых рубежей. В смысле развития математики простые числа являются источником чрезмерного богатства: как это ни парадоксально звучит, даже хорошо, что эта теория до конца не изучена. И все говорит о том, что такая ситуация будет сохраняться в течение долгого времени.

Вы автор?
Жалоба
Все материалы размещаются на сайте его пользователями.
Если Ваша книга была опубликована без Вашего ведома и/или без Вашего согласия, пожалуйста, напишите нам, и мы в срочном порядке примем меры.