Том 18. Открытие без границ. Бесконечность в математике | страница 25



Если мы рассмотрим представление рациональных и иррациональных чисел в виде десятичных дробей, то увидим, что между ними имеется существенная разница. Например, число 1/2 в виде десятичной дроби записывается как 0,5, а 1/3 = = 0,333333333 … — в записи этого числа бесконечно много десятичных знаков, однако ситуация по-прежнему у нас под контролем, так как все эти знаки равны 3.

Число вида

325/100 = 3,25

имеет всего два десятичных знака.

95/99 = 0,4545

имеет бесконечно много знаков, но цифры 45 повторяются бесконечное число раз (эта группа цифр называется периодом).

47113/9000 = 5,2347777

представляет собой еще один вид десятичных дробей, в записи которых период появляется после непериодической части.

Квадратный корень из 2 записывается в виде бесконечной десятичной дроби, цифры которой чередуются без всякого порядка, как если бы они выбирались с помощью рулетки. Можем ли мы говорить, что нам действительно известно значение √2? Ответ: нам известно лишь его приближенное значение, хотя точность может быть сколь угодно высокой — не больше и не меньше. При этом слова «точность может быть сколь угодно высокой» подразумевают, что эта бесконечная десятичная дробь полностью находится под нашим контролем.

Британский математик Брук Тейлор (1685–1731) вычислил приближенное значение √2 при помощи последовательности сумм:


Члены этой последовательности постепенно сходятся к √2 поочередно слева и справа, что можно видеть в следующей таблице, где представлены значения первых девяти членов.



Таким образом, начав с 1 — оценки √2 слева и 1,5 — оценки справа, мы постепенно приближаемся к истинному значению этого числа. Речь идет о бесконечных последовательностях, которые постепенно приближаются к истинному значению √2, однако утверждать, что √2 — конкретное число, означает признать существование актуальной бесконечности.

Если кто-то, подобно древним грекам и многим другим математикам различных эпох, утверждает, что иррациональных чисел не существует, то можно быть уверенным, что он, пусть и неявно, отрицает существование актуальной бесконечности.


Квантовый скачок

Рассмотрим, как можно увязать между собой нечто бесконечно большое (бесконечное продолжение прямой) и бесконечно малое (деление на бесконечно много частей). Допустим, что даны две параллельные прямые и r'.



Обозначим на первой точку Р, которую будем использовать как начало отсчета. Теперь отметим на второй прямой точку Q, расположенную, например, на перпендикуляре, проведенном к