Том 3. Простые числа. Долгая дорога к бесконечности | страница 36



(1000) = 3. Тогда, например:

log>10  100 = 2;

log>10 1 000 = 3;

log>10 1 000 000 = 6.

Главной идеей такого подхода является то, что числа гораздо проще складывать, чем умножать. Например:

log>10 (100 x 1000) = log>10100 + log>101000 = 2 + 3 = 5.

Применяя обратную функцию, антилогарифм, мы получаем конечный результат:

10>5 = 100000.

Эти операции показаны в следующей в таблице:



Первая строка таблицы начинается с числа 1, и каждое следующее число в 10 раз больше предыдущего. Такой ряд чисел называется геометрической прогрессией со знаменателем 10. С другой стороны, числа в нижней строке таблицы получаются путем добавления единицы к предыдущему числу. Таким образом, верхняя строка содержит операции умножения, а нижняя строка — операции сложения. Как видно из таблицы, операция умножения

1000 x 100000 = 100000000

эквивалентна операции сложения

3 + 5 = 8.

Мы можем составить такую таблицу, используя любую геометрическую прогрессию в верхней строке, например:



Чтобы умножить 4 на 16 (верхняя строка), мы сложим 2 и 4 (нижняя строка), получив число 6, которое соответствует числу 64. Аналогично мы можем выполнить операцию деления, но в этом случае результат получается путем вычитания соответствующих чисел в нижнем ряду. Например, чтобы разделить 256 на 8, мы просто вычтем 3 из 8, то есть 8–3 = 5, что соответствует 32, числу над числом 5.

Такое соотношение между числами в нижней и верхней строках является ключевым для логарифмов.

Теперь мы можем сформулировать строгое определение логарифма. Когда мы говорим о том, что число 32 соответствует числу 5, мы имеем в виду следующее равенство:

2>5 = 32.

Напомним, что 2 в степени 5 означает, что число 2 умножается само на себя пять раз. Мы можем читать строки второй таблицы следующим образом: «Число 3 является показателем степени, в которую надо возвести число 2, чтобы получить число 8» и «число 7 является показателем степени, в которую надо возвести число 2, чтобы получить число 128», что сокращенно записывается так:

log>28 = 3;

log>2128 = 7.

Эти выражения читаются соответственно так: «Логарифм числа 8 по основанию 2 равен 3» и «логарифм числа 128 по основанию 2 равен 7». Теперь рассмотрим пример из первой таблицы, 10>4 = 10000, то есть 4 является показателем степени, в которую надо возвести число 10, чтобы получить число 10000. Запишем это с использованием логарифма: log>1010 000 = 4, что читается как «логарифм числа 10000 по основанию 10 равен 4».

Итак, обратимся к общему определению. Логарифмом числа