Том 3. Простые числа. Долгая дорога к бесконечности | страница 35



* * *

Непер также интересовался нумерологией и астрологией. Второе увлечение привело его к исследованию свойств геометрических фигур на сферической поверхности, и в результате он получил важные соотношения для сферических треугольников. Любой студент, изучавший сферическую тригонометрию, наверняка помнит формулы, носящие имя знаменитого шотландца.

Тем не менее для Непера один вопрос был намного важнее всех остальных. В те дни численные расчеты были очень утомительными. Непер подумал, что он мог бы использовать свое время более эффективно, чем просто заполнять страницу за страницей бесконечными расчетами, которые на самом деле были лишь рутинной работой.

Ему удалось изобрести устройство для быстрого умножения и деления, состоящее из стержней с квадратным сечением и доски для умножения. В 1617 г. Непер издал руководство под названием «Рабдология» (счет с помощью палочек), в котором он объяснил правила работы с этим устройством. Устройство Непера, предшественник логарифмической линейки, использовалось в Шотландии более 100 лет. (Непер позднее усовершенствовал этот инструмент, заменив стержни карточками, которые позволяли умножать большие числа. На самом деле эти карточки были прообразом знаменитых перфокарт, которые появились более чем четыре века спустя вместе с первыми компьютерами IBM.)

Однако важнейшим достижением Непера с точки зрения истории математики являются логарифмы — гениальный способ вычислений, который он опубликовал в 1614 г. под названием Mirifici Logarithmorum Canonis Descriptio («Описание удивительной таблицы логарифмов»). Чтобы оценить важную роль, которую логарифмы играют в теории простых чисел, мы сначала рассмотрим некоторые из их свойств.


Логарифмы

Логарифмы основаны на следующей идее. Мы знаем, что число 1000 = 10 х 10 х 10 может быть записано как десять в степени три, 10>3 Аналогично:

1 000 = 10>3;

10 0 00 = 10>4;

1 000 000 = 10>6.

Предположим, мы хотим перемножить эти числа:

1000 x 10000 x 1000000 = 10000000000000.

Но 10000000000000 = 10>13.

Мы могли бы выполнить это умножение, сразу написав 10>3 + 4 + 6 = 10>13. Совершенно очевидно, что проще складывать, чем умножать. Чтобы убедиться в этом, попробуйте умножить 10>38 х 10>52 = 10>90, записав числа в развернутом виде!

Здесь и появляются логарифмы. Глядя на пример 1000 = 10>3, мы можем задать такой вопрос: «В какую степень надо возвести число 10, чтобы получить 1000?» Ответом будет 3. Запишем это следующим образом: log