Том 3. Простые числа. Долгая дорога к бесконечности | страница 10
Возьмем, к примеру, вид Magicicada septendecim. Личинка цикады живет под землей и питается соками корней деревьев. Она проводит 17 лет в таком состоянии, а затем выходит на поверхность, чтобы превратиться во взрослое насекомое. Эта стадия длится всего несколько дней, во время которых цикада размножается и после этого умирает. Теория, объясняющая такой жизненный цикл цикады, выглядит следующим образом: взрослое насекомое защищается от паразита с жизненным циклом два года.
Если бы жизненный цикл цикады был кратен 2, оба вида встречались бы каждые 2, 4, 8 лет и так далее. Однако если жизненный цикл цикады является достаточно большим простым числом, например, 17, паразит и цикада могут встретиться раз в 34 года, так как 34 — первое число, кратное 17 и 2. Если бы, к примеру, жизненный цикл паразита составлял 16 лет, они бы могли встретиться раз в 16 х 17 = 272 года.
Вполне вероятно, что со временем при исследовании поведения животных найдутся еще примеры видов, которые обладают умением считать. Нас не должна смущать простота приведенных примеров, ибо факт остается фактом: несмотря на то что математические понятия, такие как простые числа, являются творением человека, исследователи в разных областях науки могут привести примеры существования этих понятий в природе независимо от нас.
Самки некоторых одиночных ос откладывают яйца в норках, где также складывают несколько парализованных гусениц, которые будут служить пищей для личинок осы после того, как те вылупятся. Самое удивительное, что эти осы знают, из каких яиц вылупятся мужские особи, а из каких женские, и оставляют для них определенное количество гусениц.
Поиск простых чисел всегда был сложной задачей. Один из первых известных методов приписывают Эратосфену из Кирены (273–194 до н. э.), древнегреческому математику, астроному и географу, который также заведовал Александрийской библиотекой. Метод получил название решета Эратосфена. Давайте посмотрим, как с помощью этого метода можно найти простые числа в первой сотне натуральных чисел.
Во-первых, составим таблицу со всеми натуральными числами от 1 до 100. Затем вычеркнем все числа, кратные двум: 4, 6, 8, 10 потом вычеркнем все числа, кратные трем: 6 (уже вычеркнули), 9, 12, 15. Затем проделаем то же самое для чисел, кратных пяти и семи.