Квантовая механика II | страница 9



>n) как функция х для суперпозиции нескольких состояний с близкими энергиями.

Подстав­ляя (11.16) вместо Е, получаем

Иными словами, электроны движутся по кристаллу с быстротой, пропорциональной самому характерному k. Тогда, согласно (11.16), энергия такого электрона пропорциональна квадрату его скорости, он ведет себя подобно классической частице. Пока мы рассматриваем все в столь крупном масштабе, что никаких тонкостей строения разглядеть не можем, наша квантовомеханическая картина приводит к тем же результатам, что и клас­сическая физика.

В самом деле, если из (11.18) найти k и подставить его в (11.16), то получится

где m>эфф — постоянная. Избыточная «энергия движения» элект­рона в пакете зависит от скорости в точности так же, как и у классической частицы. Постоянная m>эфф, именуемая «эффектив­ной массой», дается выражением

Заметьте еще, что можно написать

Если мы решим назвать m>эффv «импульсом», то этот импульс будет связан с волновым числом k так же, как и у свободной частицы.

Не забывайте, что m>эффничего общего не имеет с реальной массой электрона. Она может быть совсем другой, хотя следует сказать, что в реальных кристаллах часто случается, что ее порядок величины оказывается примерно таким же (в 2 или, скажем, в 20 раз больше, чем масса электрона в пустом про­странстве).

Мы только что с вами раскрыли поразительную тайну — как это электрон в кристалле (например, пущенный в германий добавочный электрон) может пронестись через весь кристалл, может лететь по нему совершенно свободно, даже если ему при­ходится сталкиваться со всеми атомами. Это получается оттого, что его амплитуды, перетекая с одного атома на другой, прокладывают ему путь через кристалл. Вот отчего твердое тело может проводить электричество.

§ 4. Электрон в трехмерной решетке

Еще немного о том, как можно применить те же идеи, чтобы понять, что происходит с электроном в трех измерениях. Резуль­таты оказываются очень похожими. Пусть имеется прямоуголь­ная решетка атомов с расстояниями а, b, с в трех направлениях. (Если вам больше по душе кубическая решетка, примите все расстояния равными друг другу.) Предположим также, что ам­плитуда прыжка к соседу в направлении х есть iA>x/h; ампли­туда прыжка в направлении у есть iA>y/h, а амплитуда прыжка в направлении z есть iA>z/h. Как же описать базисные состоя­ния? Как и в одномерном случае, одно базисное состояние — это когда электрон находится близ атома с координатами