Квантовая механика II | страница 10
х=n>ха, y=n>yb и z=n>zс,
где n>х, n>y, n>z —три целых числа. Вместо того чтобы ставить при х, у и z их номера, будем просто писать х, у, z, имея в виду, что они принимают лишь такие значения, которые бывают у точек решетки. Итак, базисное состояние изображается символом | электрон в х, у, z>, а амплитуда того, что электрон в некотором состоянии |y> окажется в этом базисном состоянии, есть
С (х, у, z)=< электрон в х, у, z |y>.
Как и прежде, амплитуды С (х, у, z) могут меняться во времени. При наших предположениях гамильтоновы уравнения обязаны выглядеть следующим образом:
Хоть это и выглядит громоздко, но вы сразу, конечно, поймете, откуда взялось каждое слагаемое.
Опять попробуем найти стационарное состояние, в котором все С меняются со временем одинаково. И снова решение есть экспонента
Если вы подставите это в (11.22), то увидите, что оно вполне подойдет, если только энергия Е будет связана с k>x, k>yи k>z>следующим образом:
Теперь энергия зависит от трех волновых чисел k>x, k>y, k>z, которые, кстати, есть компоненты трехмерного вектора k.
И действительно, (11.23) можно переписать в векторных обозначениях:
Амплитуда меняется как комплексная плоская волна, которая движется в трехмерном пространстве в направлении k с волновым числом k=(k>2>x+k>2>y+ k>2>z)>1/2.
Энергия, связываемая с этими стационарными состояниями, зависит от трех компонент k сложным образом, подчиняясь уравнению (11.24). Характер изменения Е зависит от относительных знаков и величин А>х,А>уи А>z. Если вся эта тройка положительна и если нас интересуют лишь маленькие k, то зависимость оказывается сравнительно простой.
Разлагая косинус, как и раньше [см. (11.16)], мы теперь придем к
В простой кубической решетке с расстоянием а между узлами следует ожидать, что и А>х, и А>y, и А>гбудут все равны друг другу (скажем, равны А), так что получилось бы
или
А это как раз совпадает с (11.16). Повторяя те же рассуждения, что и тогда, мы пришли бы к заключению, что электронный пакет в трех измерениях (составленный путем суперпозиции множества состояний с почти одинаковыми энергиями) также движется на манер классической частицы, обладающей некоторой эффективной массой.
В кристалле не с кубической, а с более низкой симметрией (или даже в кубическом кристалле, но таком, в котором состояние электрона около атома несимметрично) три коэффициента