Квантовая механика II | страница 6
Фиг. 11.2. Изменение вещественной части С>n с х>n.
Огибающая этих вертикалей (показанная штрихованной линией) является, конечно, косинусоидой. Мнимая часть С>n — это тоже колеблющаяся функция, но она сдвинута по фазе на 90° , так что квадрат модуля (сумма квадратов вещественной и мнимой частей) у всех С один и тот же.
Итак, выбирая k, мы получаем стационарное состояние с определенной энергией Е. И в каждом таком состоянии электрону одинаково вероятно оказаться около любого из атомов, никаких преимуществ у одного атома перед другим нет. От атома к атому меняется только фаза. Фазы меняются еще и со временем. Из (11.14) следует, что вещественная и мнимая части распространяются по кристаллу, как волны, как вещественная и мнимая части выражения
Волна может двигаться либо к положительным, либо к отрицательным х, смотря по тому, какой знак выбран для k.
Заметьте, что мы предположили, что поставленное в нашем пробном решении (11.10) число k есть число вещественное. Теперь видно, почему в бесконечной цепочке атомов так и должно быть. Пусть k было бы мнимым числом —ik'. Тогда амплитуды а>nменялись бы, как
Соотношение (11.13) между энергией Е и волновым числом k изображено на фиг. 11.3.
Фиг. 11.3. Энергия стационарных состояний как функция параметра k.
Как следует из этого рисунка, энергия может меняться от Е>0-2А при k=0 до Е>0+ 2А при k=±p//b. График начерчен для положительных А, при отрицательных А кривую пришлось бы перевернуть, но область изменения осталась бы прежней. Существенно то, что в некоторой области, или «полосе» энергий допустимы любые значения энергии; вне полосы энергии быть не может. Из наших предположений следует, что если электрон в кристалле находится в стационарном состоянии, энергия его не сможет оказаться вне этой полосы.
Согласно (11.10), меньшие k отвечают более низким энергетическим состояниям Е»Е>0-2А. Когда k по величине растет (все равно, в положительную или отрицательную сторону), то энергия сперва растет, а потом при