Квантовая механика II | страница 5
Перед нами бесконечное число уравнений для бесконечного количества неизвестных а>n! Ситуация тяжелая!
Но мы знаем, что надо только взять детерминант... нет, погодите! Детерминанты хороши, когда уравнений два, три или четыре. Но здесь их очень много, даже бесконечно много, и вряд ли от детерминантов будет толк. Нет, лучше попробовать решать эти уравнения прямо. Во-первых, пронумеруем положения атомов; будем считать, что n-йатом находится в х>n, а (n+1)-й— в х>n>+>1. Если расстояние между атомами равно b (как на фиг. 11.1), то х>n>+>1=х>n+b. Взяв начало координат в атоме номер нуль, можно даже получить х>n=nb. Уравнение (11.5) можно тогда переписать в виде
а уравнение (11.6) превратится в
Пользуясь тем, что x>n>+>1=x>n+b, это выражение можно также записать в виде
Это уравнение немного походит на дифференциальное. Оно говорит, что величина а(х) в точке х>nсвязана с той же физической величиной в соседних точках х>n±b. (Дифференциальное уравнение связывает значения функции в точке с ее значениями в бесконечно близких точках.) Может быть, здесь подойдут методы, которыми мы обычно пользуемся для решения дифференциальных уравнений? Попробуем.
Решения линейных дифференциальных уравнений с постоянными коэффициентами всегда могут быть выражены через экспоненты. Попробуем и здесь то же самое; в качестве пробного решения выберем
Тогда (11.9) обратится в
Сократим на общий множитель
Два последних члена равняются 2Аcoskb, так что
E=E>0-2Acoskb. (11.13)
Мы обнаружили, что при любом выборе постоянной k имеется решение, энергия которого дается этим уравнением. В зависимости от k получаются различные возможные энергии, и каждая k соответствует отдельному решению. Решений бесконечно много, но это и не удивительно, ведь мы исходим из бесконечного числа базисных состояний.
Посмотрим, каков смысл этих решений. Для каждой k уравнение (11.10) дает свои а. Тогда амплитуды обращаются в
причем нужно помнить, что энергия Е также зависит от k в согласии с уравнением (11.13). Множитель
При этом имейте в виду, что колебания амплитуды в пространстве комплексны, модуль ее вблизи любого атома один и тот же, а фаза (в данный момент) от атома к атому сдвигается на ikb. Чтобы можно было видеть, что происходит, поставим у каждого атома вертикальную черточку, равную вещественной части амплитуды (фиг. 11.2).