Физика сплошных сред | страница 48
Вот один из примеров того, что мы имеем в виду. Составляющая по оси у электрического поля Е должна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:
СXE=дB/дt, (33.19)
в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).
Фиг. 33.4. Граничное условие E>y>2=E>y>1, полученное из равенства
Согласно уравнению (33.19), криволинейный интеграл от Е по петле Г равен скорости изменения потока В через эту петлю:
Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Е должен быть нулем. Если y-компоненты поля на двух сторонах границы равны Е>y>1и Е>y>2, а длина прямоугольника равна l, то мы получаем
E>y>1l-E>y>2l=0
или
Е>у1=Е>у>2, (33.20)
как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.
Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрении маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватывающих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.
Как, например, в задаче о тепловом потоке через поверхность определить температуру на обеих прилежащих к ней сторонах? Конечно, вы вправе утверждать, что тепло, притекающее к границе с одной стороны, должно быть равно теплу, утекающему от нее с другой. Обычно это возможно и, вообще говоря, очень полезно находить граничные условия из такого рода физических рассуждений. Однако могут встретиться случаи, когда при работе над какой-то проблемой вам известны лишь уравнения и вы не можете непосредственно увидеть, какие же физические аргументы можно использовать. Так что, хотя в данный момент мы заинтересованы только в электромагнитных явлениях, где можно привести физические аргументы, я хочу научить вас методу, который можно применить в любой задаче: общему методу нахождения непосредственно из дифференциальных уравнений того, что происходит на границе.