Физика сплошных сред | страница 47
Из опыта вам известно, что когда на границу раздела двух материалов, скажем воздуха и стекла или воды и бензина, попадает плоская волна, то возникают как отраженная, так и преломленная волны.
Предположим, что, кроме этого факта, нам больше ничего неизвестно, и посмотрим, что можно из него вывести. Выберем наши оси так, чтобы плоскость yz совпадала с поверхностью раздела, а плоскость ху была перпендикулярна фронту волны (фиг. 33.3).
Фиг. 33.3. Векторы, распространения k, k' и k" для падающей, отраженной и преломленной волн.
Электрический вектор в падающей волне может быть записан в виде
Поскольку вектор k перпендикулярен оси z, то
k·r=k>xx+k>yy. (33.12) Отраженную волну мы запишем как
так что ее частота равна w', волновое число k', а амплитуда Е'>0. (Мы, конечно, знаем, что частота и величина вектора k в отраженной волне те же, что и в падающей волне, но не хотим предполагать даже это. Пусть это все получится само собой из математического аппарата.) Наконец, запишем преломленную волну:
Вы знаете, что одно из уравнений Максвелла дает соотношение (33.9), так что для каждой из волн
Кроме того, если показатели преломления двух сред мы обозначим через n>1и n>2, то из уравнения (33.10) получится
Поскольку отраженная волна находится в том же материале, то
в то время как для преломленной волны
§ 3. Граничные условия
Все что мы делали до сих пор, было описанием трех волн; теперь нам предстоит выразить параметры отраженной и преломленной волн через параметры падающей. Как это сделать?
Три описанные нами волны удовлетворяют уравнениям Максвелла в однородном материале, но, кроме того, уравнения Максвелла должны удовлетворяться и на границе между двумя материалами. Так что нам нужно сейчас посмотреть — что же происходит